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1 Introduction

In simple mathematical terms, a corpus of natural language texts can be defined as a set which ab-
stracts from any order of its elements w.r.t each other so that each element is separately processed
by some corpus linguistic operation (e.g., of collocation statistics). This view implies the absence of
structure formation within the corpus or at least disregards it from the point of view of text represen-
tation and subsequent corpus building. Of course, a corpus of natural language texts is more than just
a set of linguistic units. There is structure formation above the level of single texts which can be made
accessible to corpus linguistic studies. According to Stubbs (1996), texts are oriented to routines and
conventions; they are shaped by prior texts to which they make intertextual references possibly (or
preferably) included in the same corpus. In this sense, Stubbs (2001) points out:

“Analysis cannot be restricted to isolated texts. It requires an analysis of intertextual relations, and therefore
comparison of individual instances in a given text, typical occurrences in other texts from the same text-type,
and norms of usage in the language in general.” (Stubbs, 2001, 120).

With the advent of web-based communication, more and more corpora are accessible which man-
ifest such intertextual relations and thus structure formation in large text networks. Moreover, the
WWW does not only manifest a tremendous set of text types (genres and registers) which already
existed before the appearance of WWW-based communication, but also a vast number of instances of
newly emerging document types, e.g., corporate sites, Wikis, weblogs or personal academic home pages
(Mehler and Gleim, 2006, 2005; Thelwall and Wouters, 2005). Theoretically, this makes the web the
source of choice for extracting large corpora of certain genres, registers and other linguistic varieties.
It also makes the web the reference point of studying the emergence of hypertext types as well as
the growth, maturity stage and dying of their instances manifested by websites and their constitutive
pages. Thus, the web has become increasingly important as a quasi inexhaustible resource of corpus
formation (Baroni and Bernardini, 2004; Keller and Lapata, 2003; Kilgarriff and Grefenstette, 2003;
Resnik and Smith, 2003; Santamaŕıa et al., 2003).

Of course, the web is not the only resource of large networks of textual units. There exist special
areas of textual networking which become accessible to corpus linguistic studies not only because of
their web-based interfaces, but also due to digitised or e-text releases (Hockey, 2000). This includes
the area of scientific communication (e.g. CiteSeer or CiteBase as examples of digital libraries), press
communication (e.g. the New York Times or the German Süddeutsche Zeitung which link articles to
thematically related ones), technical communication (e.g. the Apache Software Foundation’s technical
documentations of open source projects) and electronic encyclopedias (e.g. Wikipedia and its releases
in a multitude of languages) which can be analysed in terms of corpora of networked units. These are
examples of large corpora of interlinked texts which in the majority of cases utilise HTML in order to
manifest intertextual relations as, for example, citation links (digital libraries), content-based add-ons
(online press communication) and links to related lexicon articles (electronic encyclopedias). From a
corpus linguistic point of view, several scientific questions come to the fore regarding the formation of
such networks:

1. Preprocessing: How to provide a uniform, generic interface to the analysis of intertextual relations as
manifested in web-based communication?
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2. “Co-textualising” corpus linguistic analyses: How to explore text linkage in large text networks as a
source of corpus linguistic studies?

This question is related to the position of Fairclough (1992) who argues for an intertextual view
of analysing, for example, pre-constructed phrases and fixed collocations. In this sense, digital
manifestations of intertextual links provide a source of exploring linguistic structures which are
confirmed by intertextually related texts. Cf. also Mehler and Gleim (2006) for the notion of
collocation analyses which are sensitive to genre-specific structures.

3. Exploring structure formation in large text networks: What are the regularities of the distributed
formation of large text networks subject to the limitations of the medium in use?

As structure formation in large text networks cannot be reduced to the intentionality of single
authors, the question for distributed processes of text production and processing — distributed
over thousands of collaborating/competing authors — comes to the fore.

This article reviews the state of the art in these areas. As corpus linguistic studies of large text
networks are at the very beginning, this will relate especially to the third question. Interestingly,
arguments in support of the need of text network analyses come from computer science and, especially,
from the field of text and web mining (Mehler and Wolff, 2005). This relates to the so-called link-
content conjecture of Menczer (2004) who states that the content of a web page is similar to the content
of the pages that link to it. As Menczer approaches content in terms of Information Retrieval (IR) and,
thus, in lexical terms, this hypothesis can be reformulated as follows: A page’s lexical organisation is
similar to the lexical organisation of the pages that link to it (where lexical similarity is measured in the
framework of the vector space model based on a tf-idf weighting scheme and the cosine measure —
the tf-idf weighting scheme is a function of the term and document frequency of candidate terms; it is
used to filter out non-descriptive terms in the sense of IR; e.g., words which are evenly distributed over
all texts of the corpus and, thus, do not contribute to thematically separating them — for more details
on this model cf. Baeza-Yates and Ribeiro-Neto 1999). Menczer (2004) presents data in support
of this conjecture which also points at an exponential decay of the similarity in question from the
point of view of a focal page when following hyperlinks from page to page. As will be motivated,
this observation is in accordance with so-called small world models of social-semiotic networks (cf.,
for example, Albert et al., 1999). Supposing that Menczer’s hypothesis is continuingly supported, it
implies that additional data in support of the data being observed on a focal page comes from its
neighborhood in the web — by analogy with the argument of Stubbs (2001) cited at the beginning of
this section. Although this hypothesis has not yet been investigated in the case of more traditional text
networks, it is nevertheless plausible to conjecture it in these cases too. This may look as follows: A
text’s linguistic organisation is similar to the linguistic organisation of the texts that relate to it by means
of intertextual relations. In order to substantiate this conjecture, the notion of linguistic similarity needs
to be operationalised as well as the aspect of linguistic organisation under consideration and the type
of intertextual relation for which this conjecture actually holds. Text network analysis is a step into
this direction as it investigates principles of intertextuality which should be taken into account in the
course of corpus building in order to meet the requirement of Stubbs (2001) and related requirements.

This article puts emphasis on the state of the art of network analysis (Newman, 2000, 2003b) and
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its utilisation in the area of linguistic systems (cf. Ferrer i Cancho et al., 2005). Amongst others, this in-
cludes approaches to the notion of the small world of social systems (Watts and Strogatz, 1998; Watts,
1999). From the point of view of quantitative linguistics, this comprises cluster and pathway analysis
(Newman 2003). Moreover, non-linear regression analyses of degree distributions (based on the num-
ber of in- and outgoing links) which relate to Zipfian regularities (Rapoport, 1982) are reviewed too.
The article demonstrates this analytical apparatus by example of some document networks. The aim
is to exemplify the state of the art of quantitative network analysis in the area of linguistic networks.
From the point of view of corpus linguistics, the significance of this kind of analysis is due to the fact
that it gives hints at how to quantify validity constraints of corpora based on intertextual regularities
of their constitutive texts.

Text network analysis is at its very beginning, in corpus linguistics as well as in computational
and quantitative linguistics. Although the notion of intertextuality comes into age (Fix, 2000), it
nevertheless has been addressed in terms of qualitative, descriptive, but not of exploratory corpus
linguistics. Theoretical definitions which allow to demarcate the field of document network analysis
are still missing. Accordingly, the subsequent section introduces some preliminary notions for this
task.

1.1 A Short Note on the Corpus Linguistic Relevance of Complex Network Analysis

The analysis of complex text networks is about structure formation in corpora of textual units. For
decades, text linguistics has argued that intertextuality is a source of structure formation above the
level of single texts (de Beaugrande, 1980, 1997; Heinemann, 1997; Hoey, 1995; Holthuis, 1993;
Jakobs, 1999; Raible, 1995). This kind of structure formation has two aspects: in terms of the de-
velopment of text types and in terms of the networking of their textual instances. Following this line
of argumentation, Fairclough (1992) points out that intertextual relations allow to explore related
texts and, thus, to identify significant cotexts as additional, viable data resources of corpus linguistic
studies: If two texts x and y are intertextually related due to their common or related functions or
topics, they probably contain common or related linguistic manifestations of these functions or topics,
respectively, and, thus, are more likely structured in a similar way (Biber, 1995; Brinker, 1991). This
correlation may hold on the level of lexico-grammatical patterns (Halliday, 1966) as well as on the
level of textual superstructures (van Dijk and Kintsch, 1983). In other words: Studying intertextually
related texts provides additional data to lexical and grammatical patterns and their variation subject
to the change of the underlying genres or registers, respectively (Biber, 1995; Ventola, 1987). How-
ever, in order to benefit from intertextuality as a data resource we need to explore its principles first.
That is, we need to make it an object of computational linguistics, not only on the level of pairwise
linked texts, but on the level of whole networks based thereon. This is the task of complex text network
analysis.

On the other hand, knowing the principles of intertextual structure formation (i.e. of the develop-
ment of complex text networks) provides knowledge about constraints of the “naturalness” or “non-
artificiality” of text corpora by analogy with Zipf ’s first law in the case of lexical systems. This can be
explained as follows: It is well confirmed in quantitative linguistics that the ranked frequency distribu-
tion of lexical text constituents is highly skewed in a way which departs from the normal distribution,
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text area e-text area hypertext area

atomic level text component e-text component text module

intermediate level text e-text hypertext document

network level text network e-text network hypertext document network

Table 1: Levels of structuring of text, e-text and hypertext document networks (cf. Storrer, 2002; Mehler,

2005).

but is more reliably modeled by a power-law or some related distribution (Baayen, 2001; Rapoport,
1982; Wimmer and Altmann, 1999a; Zipf, 1972). Accordingly, a “text candidate” which heavily de-
parts from this Zipfian distribution indicates to be a mixture of different texts (possibly written by
different authors) or to be an artificial product which was produced under “unusual” conditions dis-
turbing the process of text production (Orlov, 1982). Analogously, a corpus of texts whose intertextual
networking departs from the principles of text networks may indicate artificiality in the sense to be a
mixture of topically or functionally highly divergent and, thus, unrelated texts. Using such a corpus
as a starting point of inductive reasoning in corpus linguistics (Stubbs, 2006) is, thus, problematic.
Complex network analysis allows to explore such naturalness constraints of corpus formation.

In summary, the intertextual formation of linguistic patterns as well as quality constraints of text
corpora are two reference points in support of the relevance of complex network analysis in corpus
linguistics. This article surveys the state of the art in this field of research.

1.2 Text and Document Networks

Structure formation above the level of texts is based on intertextual relations which span networks
in which nodes denote texts (or textual components thereof) and links manifest coherence relations
of these nodes. With the advent of web-based communication, text networking is not only accessible
by means of e-texts and their networks, but also by hypertexts which utilise hyperlinks in order to
make intertextual relations explicit (Mehler, 2005). Starting from the notion of a document which
integrates textual content with hypertextual add-ons (Kuhlen, 1991), all three kinds of networks are
taken into account in this survey: text, e-text and (hypertext) document networks — see Table 1. For
reasons of terminological simplicity we simply speak of text and document networks and use both terms
interchangeably (while we make it explicit if only one, but not the other term is adequate). Generally
speaking, such networks are characterised as follows:

• Intertextuality: Text and document networks are units to which intertextuality can be ascribed as
a gradual, quantifiable property by analogy with textuality as a property of single texts.

Intertextual cohesion or coherence relations interrelate different texts or documents in order to
build (not necessarily mutual) constraints on their interpretations. For a formal model of such
constraints (with a focus on intratextual ones) cf. Mehler (2007). A survey of this notion is out
of reach of the present paper — cf. Mehler (2005) for such a survey. We only stress the funda-
mental distinction of referential and typological intertextuality (Heinemann, 1997): Whereas the
former comprises immediate text-to-text relations, which authors manifest more or less explicitly
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by surface structural markers, it is the shared usage of the same or alike patterns within different
texts which mediates their typological, but not necessarily intended relatedness. Since intertextual
relations are in many cases implicit, they first need to be explored in order to become an object of
network analysis. Intertextual relations of web documents may, but do not need to be manifested
by hyperlinks. As in the case of cohesion and coherence in general, there are many resources of
intertextuality so that ascribing this property to a text or document network is bound by vagueness
and under-specification due to a diversity of possibly competing criteria. Even in the case of cita-
tion relations, exploring intertextual relations can be a demanding task in terms of computational
linguistics and machine learning (Giles et al., 1998). In any case, the starting point of analysing
text and document networks is a network of textual units which is spanned by their intertextual
relations. Thus, complex text or document network analysis is about structural analyses of net-
works whose links are spanned by cohesion or coherence relations which in the majority of cases
are meaning- or content-based.

• Chaining and clustering: Intertextuality results from producing or processing intertextual relations.
These relations generate chains or clusters of thematically related texts/documents which manifest
the same, similar or otherwise associated themes, topics or fields. On the other hand, the chains
or clusters may be induced by schematically ordered texts/documents which manifest the same
or related text types, patterns or superstructures. Note that whereas chains are partially ordered,
clusters are clumps of interrelated units. Finally, as the chains and clusters overlap or intersect,
respectively, they constitute networks.

• Variability: As intertextual relations are genre-sensitive or -specific (e.g. citations in scientific com-
munication vs. content-based links in online press communication), text and document networks
as a whole are genre-sensitive, too. That is, for different genres (e.g. of scientific, technical or
press communication) variations in topological and statistical characteristics of the networks of
these genres are expected. That is, genres are expected to be distinguishable in terms of the
characteristics of their document networks.

• Distributed cognition: The production and reception of text and document networks is necessar-
ily distributed over possibly hundreds and thousands of agents. They result from cooperative or
competitive sign processes in the sense of distributed cognition (Hollan et al., 2000) and, thus,
manifest a kind of superindividual structure formation which cannot be reduced to intentional
acts of individual interlocutors — comparable to the language system, but on the level of its man-
ifestation. That is, as the lexicon of a language cannot be attributed to single interlocutors, text
networks are (because of their size) structured in a way which is not controlled by any (group of)
such interlocutors separately. But whereas the lexicon is part of the language system, texts and the
networks they induce are manifestation units.

In order to grasp the principles of this kind of networking, a combined approach which integrates
at least topological and statistical methods is needed. This can be motivated as follows: According
to Bense (1998), the formal branch of text linguistics includes algebraical, topological and statistical
aspects. Whereas algebraic approaches to discourse grammars rely on the notion of constituency and
dependency (Polanyi, 1988), it is the notion of distance and neighborhood which underlies topological
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Figure 1: A three-level model of networking.

models (Brainerd, 1977). In contrast to this, the notion of occurrence, co-occurrence and repetition
are the core of statistical approaches (Altmann, 1988). A central aim of quantitative linguistics is
to investigate those types of repetition which bring about the statistical nature of linguistic structure
formation in-between the extreme values of complete randomness and determinism.

Because of their non-linear, non-hierarchical structure formation, text and document networks are
only adequately described by means of graph theory (Schenker et al., 2005) and network analysis
(Newman, 2003b). Moreover, because of the size of these networks of hundreds and thousands of
nodes there is no alternative to automatic statistical analyses. By analogy with stochastic discourse
grammars which combine algebraic with statistical modeling, exploring these kinds of networks de-
mands integrating topological and statistical approaches. Thus, the methods of statistical network
analysis as elaborated in social science and subsequently sophisticated in physics builds the methodic
core of this survey.

1.3 Delineation and Terminological Notes

This survey is about regularities of large networks of textual units as a special kind of complex net-
works. A network is called complex if it consists of hundreds and thousands or even millions of nodes
in a way which affects its self-regulation and -organisation (Milgram, 1967; Newman, 2003b). The
aim of analysing complex networks of texts or documents is to investigate indicators of structure for-
mation which can be utilised for the task of corpus building and maintenance. In his survey of the
structure and function of complex networks, Newman (2003b) reports on results of analysing social,
informational, technical and biological networks. Amongst others, this comprises co-authorship and
company director networks, WWW-based networks and citation networks, the Internet and peer-to-
peer networks as well as protein interaction and neural networks. Focusing on social, technical and
informational networks, Park (2003) interrelates these areas as follows: As a sort of informational net-
work, hyperlink networks are based on the Internet as a kind of technological network which, in turn,
manifests a communication network as a sort of social network in which nodes denote interconnected
individuals.

Starting from this general view, we can delineate the object of the present survey as follows: Gen-
erally speaking, it does not regard social networks in which nodes denote individuals, agents, actors
or communities thereof and where links represent social (communication) relations of these agents
(Wasserman and Faust, 1999; Kautz et al., 1997; Otte and Rousseau, 2002). Other than these and
related analyses, this review deals with networks whose nodes are linguistic units down from the level
of words, up to the level of texts and hypertexts, respectively, where the main focus is on the latter.
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Nevertheless, this review is not restricted to hyperlink networks (Park, 2003), but takes networking
within old and new media into account thereby stressing the need to explore intertextual relations
beyond hyperlinks as a source of networking within text corpora. As pointed out by the three-layer
model in Figure 1, this does not deny the fact that text and document networks are manifestations
of some linguistic system which, in turn, is enclosed by a corresponding social system (e.g. a speech
community). Rather, it has to be understood as an indispensable reduction of the variety of network
studies to be surveyed within this article. As will be shown in the subsequent section, this includes a
wide area of text and document networks ranging from social software-based networks to networks
in scientific and press communication.

A note on terminology: The terms node and link will be used when speaking about networks,
while vertex and edge are used when speaking about graphs as formal models thereof. Further, as
the apparatus of complex network analysis has predominantly been developed by example of social
networks, we will use the term social-semiotic network in order to stress the encompassing field of
linguistic, text and social networks as interrelated in Figure 1.

This article deals with complex networks of textual units. Such networks do not only form a
special kind of complex networks but also large corpora. In other words, networks of textual units
are a sort of large linguistic corpora whose specificity is due to their structuring based on the network
inducing intertextual relations of their constitutive units. For the annotation and representation of
large linguistic corpora in general see article 37 in this volume. A more specialised case of a complex
network of textual units is given by networks whose nodes denote web documents. Analogously, we
have a special kind of a web corpus structured by the hyperlinks of its constitutive elements when
dealing with complex networks of web documents. For web corpora as an object of corpus linguistics
in general see article 55 in this volume. See also article 21 in this volume on various corpora of
computer-mediated communication including web corpora. This article deals more specifically with
aspects of networking in corpora of textual units, its graph-theoretical representation and quantitative
modeling in various areas of text and document networks.

The article is organised as follows: Section 2 introduces graph theoretical notions and outlines
some results of the theory of complex networks as needed subsequently. This relates especially to the
so-called small-world property which allows to separate the area of random and social-semiotic net-
works. Section 3 surveys network-oriented studies in corpus, computational and cognitive linguistics
as well as in computer science. This includes but is not limited to lexical, sentence and WWW-based
networks. Finally, Section 4 gives a conclusion and prospects future directions within the present field
of research.

2 Structure Formation in Large Networks

The concept of a social-semiotic network in general and that of a small world in particular is formally
narrowed down in terms of graph theory. That is, networks to be analysed as candidates of small
worlds are, first of all, modeled as graphs. The following sections survey this kind of modeling: Section
2.1 starts with an overview of some notions of graph theory as used subsequently. The classical model
of small worlds as introduced by Watts and Strogatz (1998) which, since then, has been applied in
various areas of network formation is described in Section 2.2. Section 2.3 overviews the alternative
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Notation Description

CBR(G) The cluster value of graph G according to Watts and Strogatz (1998).

CWS(G) The cluster value of graph G according to Bollobás and Riordan (2003).

d(G) The average degree of vertices of graph G.

dG(v) The degree of vertex vi of graph G.

∆(G) The diameter of graph G.

E(G) The set of edges of graph G.

ε(G) An alternative coefficient of the average degree of vertices of graph G.

γ The exponent of a power law fitted to the degree distributions of a given graph.

γin The exponent of a power law fitted to the in-degree distributions of a given graph.

γout The exponent of a power law fitted to the out-degree distributions of a given graph.

L(G) The average geodesic distance of vertices of graph G.

r(G) The correlation coefficient of the degrees of interlinked vertices of G.

θ The exponent of a power law fitted to the cluster coefficient C(k) as a function of degree k.

V (G) The set of vertices of graph G.

Table 2: Basic graph theoretical notions used throughout the article.

model of Barabási and Albert (1999) who — other than Watts and Strogatz — take the temporal aspect
of network growth into account. In the meantime, several more indices have been introduced in order
to quantitatively classify networks. This relates, especially, to what is called assortative mixing as a
characteristic of social instead of technical networks. Section 2.4 gives a short summary of it. Next,
Section 2.5 describes concepts of structure formation within complex networks above the level of
local clusters as considered in the model of Watts and Strogatz. Finally, Section (2.6) reconsiders
time-dependent constraints of network formation.

2.1 Graph Theoretical Preliminaries

This subsection briefly surveys fundamental notions of graph theory as they are needed for complex
network analysis. Table 2 summarises these and other definitions introduced subsequently. For a more
thorough introduction to graph theory confer Diestel (2005), Melnikov et al. (1998) and Bronstein
et al. (1999).

Let [X]k be the set of all subsets of k elements of X. A simple undirected graph G is a pair G = (V, E)
where V is the set of vertices and E the set of edges such that E ⊆ [V ]2. If G = (X, Y ) is a graph,
then V (G) = X denotes its vertex set and E(G) = Y its edge set. The order |G| of a graph G is the
number of its vertices. An edge e = {v, w} ∈ E is ending at v and w which are both incident with e

and thus adjacent or neighbors. We also say that two edges are adjacent if they end at least at one
common vertex. E(v) is the set of all edges to which v is incident. G is complete if all its vertices are
pairwise adjacent. A complete graph of order n is denoted by Kn. A triangle is a complete graph K3

of order 3. NG(v) is the set of neighbors of v ∈ V (G). Usually, the subscript is omitted if the graph
referred to is evident. The degree dG(vi) = ki of a vertex vi is the number |E(v)| of edges ending at v.
Evidently, |E(v)| = |N(v)| (note that E is a set and therefore does not contain multiple edges which
are introduced below). A graph is called regular (or k-regular) if all its vertices have the same degree
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G1 : G2 : G3 :

Figure 2: A graphical representation of an undirected graph G1 = (V, E) with V = {v, w, x, y, z} and
E = {e1, . . . , e5}. G1 is of order |G1| = 5. Edge e3 = {x, y} is ending at vertex x and y. e3 is adjacent
with e2 and e4. Vertex x is adjacent to two edges, that is, E(x) = {e2, e3}. Further, NG1(x) = {w, y} is
the set of neighbors of x. The degree of x is dG1(x) = |E(x)| = |NG1(x)| = 2. G1 is not complete. A
triangle, that is, a complete graph of order 3, is exemplified by G2. Note that G1 and G2 are both 2-
regular graphs. Thus, d(G1) = d(G2) = 2 and ε(G1) = ε(G2) = 1. (v, e1, w, e2, x, e3, y) is a simple path
with end vertices v and y. The distance δ(v, y) is 2 since (v, e5, z, e4, y) is the shortest path between
v, y in G1. The diameter ∆(G) of G is 2. Obviously, G1 and G2 are connected. G3 demonstrates a
multi- and pseudograph, respectively, with multiple edges e1 and e2 as well as a loop e3.

(k). The average degree of a graph G is d(G) = 1
|V |

∑
vi∈V dG(vi). In the following sections, we will

alternatively refer to the ratio

ε(G) = |E(G)|/|V (G)| = 1
2
d(G) . (1)

A sequence P = (vi0 , ej1 , vi1 , ej2 , . . . , vin−1 , ejn , vin), n > 0, is called walk of length n between vi0

and vin in G, if for k = 1, . . . , n: ejk
= {vik−1

, vik} ∈ E(G). vi0 and vin are called end vertices of P .
All other vertices are called inner w.r.t P . A walk is called path if all its edges are distinct. A path is
called simple if all its inner vertices are distinct. A path is called cyclic if its end vertices are equal. The
distance δ(v, w) of two vertices v, w, v 6= w, is the length of the shortest path ending at v and w. The
diameter ∆(G) = maxv,w∈V (G),v 6=w δ(v, w) of a graph G is the maximal distance between any pair of
vertices in V (G). A non-empty graph G is connected if for any pair of vertices v, w ∈ V (G) there exists
a path ending at v and w. A maximal connected subgraph of G is called component of G. A graph G

is called bipartite if its vertex set V (G) is partitioned into non-empty disjunct subsets A,B such that
every edge {v, w} ∈ E(G) is ending at vertices v ∈ A and w ∈ B. For reasons of clarity, we will call
A and B the modes of the bipartite graph G and speak, more specifically, of the bottom mode and the
top mode where the latter is seen to be placed “over” the former (see Figure 3).

So far we neither considered loops, nor multiple, parallel or directed edges which are grasped
by the following definitions — these additional definitions are needed in order to map, for example,
reflexive links from a web page to itself (i.e. loops) or different links between the same Wikipedia

articles (i.e. parallel edges):

1. A multigraph is a pair (V, E) whose edge set E is defined as a collection of subsets of [V ]2 and, thus,
may — in contrast to simple graphs — contain several copies of the same elements of [V ]2 where
equal elements of E are called multiple edges.
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G4 : G5 :

Figure 3: A bipartite graph G4 whose vertex set V (G4) is separated by its edge set into the subsets
A = {a, b, c, d} and B = {x, y, z}. As a matter of convention we call A the top mode and B the bottom
mode of G4. G5 exemplifies a directed graph where in(e1) = in(e2) = v and out(e1) = out(e2) = w.
Thus, e1 and e2 are not only multiple, but also parallel in G5. G5 is an orientation of G3.

2. A pseudograph is a pair (V,E) where E is defined as a collection of unordered pairs of not necessar-
ily different vertices of V . Thus, pseudographs may — in contrast to multigraphs — also contain
loops.

3. A directed graph (or digraph) is a pair (V, E) of a vertex set V and an edge set E together with two
functions in: E → V and out: E → V such that for every edge e ∈ E, in(e) is the initial vertex and
out(e) the end vertex of e. Edges ei, ej , for which {in(ei), out(ei)} = {in(ej), out(ej)}, are called
multiple. Edges ei, ej , for which in(ei) = in(ej) and out(ei) = out(ej), are called parallel. Finally,
an orientation D = (V, X) of an undirected graph G = (V, E) is a directed graph such that for
every edge e ∈ X: {in(e), out(e)} ∈ E. A graph is called mixed if it contains two sets E1, E2 of
undirected and directed edges, respectively.

4. A graph is called uniquely labeled if its vertices have pairwise different labels. In order to simplify
notation, we assume that indexed vertices vi, vj ∈ V (G), i, j ∈ N, are labeled by their indices.
Thus, we sometimes will abbreviate vi by i.

For additional notions of social network analysis which are used in order to characterise graphs in
quantitative terms cf. Otte and Rousseau (2002). This relates, amongst others, to the notion of compo-
nents and cliques on the one hand and of density, centrality, and cohesion (Egghe and Rousseau, 2003)
on the other hand. See also Wasserman and Faust (1999) for a comprehensive overview on graph the-
oretical concepts in network analysis. For a survey of complex network analysis and its various fields
of application see Newman (2000, 2003b). See also Watts (1999, 2003) and Strogatz (2001) for
thorough introductions to this field. Further, see Thelwall et al. (2006) for a comprehensive overview
of network analysis by example of the WWW. Finally, www.cs.cornell.edu/courses/cs685/2002fa
is an excellent collection of links on complex network analysis.

The subsequent sections survey indicators of small world formation in complex networks as they
were introduced in the literature. By default, these indicators are introduced for simple undirected
graphs — in some cases, their derivation for directed and multi-graphs will be described.

2.2 Short Cuts and Clusters

What regards the overall structure of complex networks, these and related questions are, for the time
being, investigated in terms of so-called Small Worlds (SW) (Newman, 2003b). Since its invention by
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Milgram (1967), this notion awaited formalisation as a measurable property of large, complex net-
works which allows distinguishing them from random graphs. Milgram started from a social network
of persons and their acquaintance (or friendship) links. He asked, so to speak, about the expected
value of the shortest chain of such links which are connecting agents of a starting population from
well specified target persons in a given population. More specifically, an agent of the starting popula-
tion is presented with a description of a target person and asked to advance a letter to her by sending
it to an acquaintance whom she considers more likely than herself to know the target. Each of these
persons in turn advances the letter by the same procedure until the target person is reached. In so-
cial network analysis (Wasserman and Faust, 1999) this is a classical question about the cohesion of
a network which affects the network’s efficiency and vulnerability of information flow. In Milgram’s
model, the short-cut property, that is, the characteristic short average distance between any randomly
chosen pair of nodes of a network, is seen as the central small world indicator. But this property alone
does not delineate small worlds from random networks which also have the short-cut property, but
obviously miss the kind of structure formation known from social networks. A first formalisation of
small worlds was introduced by Watts and Strogatz (1998) who characterise them by two properties:

• Compared to random graphs, small worlds show a considerably higher level of cluster formation.

• Compared to regular graphs, any randomly chosen pair of vertices in a small world has, on average,
a considerably shorter distance.

In order to operationalise these statements, Watts and Strogatz introduce two indicators of clus-
tering and density, respectively. First, clustering in a simple undirected graph G is measured by the
mean of the cluster value Cvi(G) of its vertices vi ∈ V (G). More precisely, clustering is measured as
the mean of the ratio of the number adj(vi) of edges ending only at neighbors of vi to the number of
edges in a corresponding complete graph of order |NG(vi)| (i.e. a graph in which all neighbors of vi

are adjacent) (note that in a simple undirected graph adj(v) equals the number of triangles incident
with v):

Cvi(G) =
adj(vi)(
dG(v)

2

) =
adj(vi)

d(vi)(d(vi)− 1)/2
∈ [0, 1] (2)

This allows to define the cluster value CWS(G) of G as (note that n = |V (G)|)

CWS(G) =
1
n

n∑

i=1

Cvi(G) ∈ [0, 1] (3)

CWS measures the average proportion of the neighbors of vertices that are themselves neighbors.
It estimates the probability by which two vertices v, w are themselves adjacent when commonly linked
with the same vertex u. In terms of friendship networks, for example, in which vertices denote indi-
viduals, a high cluster value CWS means that the friend of a friend of a person is probably also the
friend of that person.

The notion of clustering relates to the notion of transitivity in social networks: A triad of agents
a, b, c is said to be transitive if whenever a links to b (i.e. a → b) and b → c, then a → c (Wasserman and
Faust, 1999, 243). See Rapoport (1953) for an early study of transitivity patterns in social networks.
As the term clustering has a completely different meaning, e.g., in explorative data analysis (Bock,
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1994), the term transitivity is preferred in the network literature (Newman, 2003b). Following this
manner of speaking, a network is said to be transitive to the amount of the probability that if any of its
vertices a, b and b, c are linked, then a and c are linked, too. In this sense, CWS is a candidate measure
to estimate this probability.

Of course, the reason of edge formation varies with the network being modeled. In the area
of social-semiotic networks, vertices may represent, for example, interlocutors which are seen to be
linked whenever they communicate. Alternatively, vertices may represent the linguistic manifestations
of this communication in the form of discourse units which are seen to be linked whenever they are
related by one or more intertextual coherence relations. In this case, a high CWS value means that if a
focal discourse unit a is simultaneously related to some units b and c, then there is a high probability
that there is an intertextual relation linking b and c, too.

A drawback of the definition of CWS is that it does not appropriately operate on multigraphs.
The reason is that it counts a triple only once even if spanned by multiple edges between the same
vertices. Therefore, Bollobás and Riordan (2003) alternatively propose the cluster coefficient CBR(G)
as the fraction of the number of triangles within G and the number of pairs of adjacent edges:

CBR(G) =
3× number of triangles of G

number of pairs of adjacent edges of G
∈ [0, 1] (4)

High values of CBR(G) and CWS(G) indicate that linkage in G tends to be transitive in the sense
that if any vertex u ∈ V (G) is linked with vertices v, w ∈ V (G), then v and w are probably linked, too.
Obviously, this notion of clustering is not to be confused with cluster analysis in which clusters of any
size are computed which optimise the proportion of cluster internal homogeneity and cluster external
heterogeneity in the sense of the underlying similarity measure (Bock, 1994). In contrast to this, the
reference point of clustering according to CBR and CWS is the local notion of a triangle based on three
vertices. This “restriction” has been the starting point of developing more elaborate models of local
structure formation — see, e.g., Milo et al. (2002) and Section 2.5.

A central observation of Watts and Strogatz (1998) is that in regular graphs of the sort they have
examined, clustering is high, whereas in random graphs it is low. This value distribution is reversed
by the average distances within regular and random graphs measured as follows:

L(G) =
1(|V (G)|
2

)
∑

{v,w}∈[V ]2

δ(v, w) (5)

Note that in the case of large networks (of hundreds and thousands of nodes), L(G) is estimated
by means of random samples of up to some thousand vertices of G and their geodesic distances.

Bollobás and Riordan (2003) point out that although by definition L(G) ≤ ∆(G), L(G) is mostly
not much smaller than ∆(G). Therefore, ∆(G) is referred to as an alternative indicator of distance
formation in small worlds (Albert et al., 1999).

In the case of hypertext networks, for example, small values of L(G) indicate that the topic of
pages changes fast, i.e., already after a couple of clicks when following the hyperlinks between their
modules, supposing that the basic population is thematically diversified as, for example, in the case
of the Wikipedia. Generally speaking, small average geodesic distances indicate rapid changes of a
given variable V (e.g. topic, genre, register etc.) when following links between nodes of a network
supposed that the values of V are diversified within this network.
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Graph Clustering CWS(G) CBR(G) Distance L(G)

regular high k < 2
3
n ⇒ C = 3(k−2)

4(k−1)
cf. Bollobás and Riordan (2003) long L = n

2k
À 1

SW high see Formula 3 see Formula 4 short see Formula 5

random low C = k/n cf. Bollobás and Riordan (2003) short L ∼ ln(n)
ln(k)

Table 3: Cluster values and average distances in small worlds compared to regular graphs and random
graphs. Estimators are given for corresponding random and regular graphs subject to the condition
that n À k À lnn À 1 (Watts and Strogatz, 1998) where n = |V | and k = d(G). k À log n ensures
that the corresponding random graph is connected (Baldi et al., 2003).

Starting from L(G) and CWS(G), Watts and Strogatz (1998) narrow down their notion of a small
world — henceforth called WS model (note that WS abbreviates the initials of the authors of this
model). Their basic idea is to start with a regular graph whose edges are stepwise rewired with
probability p such that for certain values of p small worlds emerge which simultaneously have high
cluster values and short average distances. More specifically, they start from a 2r-regular graph Cr

n,
i.e. the rth power of an n-cycle, of fixed order n > 2r in which vertices are adjacent whose distance
within the n-cycle Cn is at most r (Bollobás and Riordan, 2003). Next, they derive a random graph
G(p) from Cr

n by rewiring a proportion p ∈ (0, 1] of its edges. The “‘surprising’ observation” (Bollobás
and Riordan, 2003) is that even for small values of p, that is, for the introduction of a small amount
of randomness, small worlds emerge which share high cluster values with regular graphs and short
distances with random graphs, that is:

CX(Gregular) ∼ CX(Gsw) À CX(Grandom)

and

L(Gregular) À L(Gsw) ∼ L(Grandom)

for X ∈ {WS, BR}. This is summarised in Table 3 in which estimators of L and CWS are given for the
corresponding regular and random graphs of equal order (i.e. size) n and average degree d(G) (as an
index of sparsity or density) (cf. Bollobás and Riordan, 2003).

In summary, the WS model combines cluster formation with the formation of short distances by
means of some short-cuts which provide efficient information flow within the network. In the area of
social-semiotic networks, this property has been demonstrated by example of the WWW, collocation
networks and thesauri. This is described in detail in Section 3.

The notion of a small world as emerging from introducing a small amount of randomness which
generates short-cuts within initially regular graphs has been the starting point of a critical review of
the WS model (Newman, 2000). One reason is that social networks are expected to be structured far
away from the topology of regular graphs. Another reference point is the focus of the WS model on
cluster and distance values and, thus, on node indices. L(G) indicates a global network property in
the sense that it aggregates values which interrelate all pairs of nodes of a network. In contrast to this,
CWS(G) indicates a local network property. The reason is that although cluster values are aggregated
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for the whole network, their reference point are triangles and connected triples of vertices. Thus, both
indices, L(G) and CWS(G), focus on single moments of the distributions of the corresponding input
values and thus miss to describe these distributions in more detail. The following section describes a
model which tackles this shortcoming.

2.3 Scale-Free Networks

Whereas the WS model describes small worlds under a static perspective, it is the dynamic perspec-
tive of network growth under which small worlds are described in the preferential attachment model
of Barabási and Albert (1999) henceforth called BA model. It starts from the observation that the
vertex connectivities of some complex networks are distributed according to a scale-free power law
in addition to their common property of short-cuts and local clustering. More precisely, Barabási and
Albert recur to the observation — confirmed by many social-semiotic networks, but not, for example,
by instances of the random graph model of Erdős & Rényi (cf. Bollobás, 1985) — that the number of
links per vertex can be reliably predicted by means of a power law. In other words: The probability
P (k) that a randomly chosen vertex interacts with k other vertices of the same graph representing a
network is approximately:

P (k) ∼ k−γ (6)

where γ is often between [1.5, 3.5] (Newman, 2003b; Milo et al., 2002).
In the present case, in which power laws are fitted to the degree distributions of vertices of an

undirected graph, this indicates that connectivity is scale-free and thus relates to the Zipfian nature of
many social-semiotic phenomena (Rapoport, 1982) as, for example, in the case of the rank-frequency
distribution of lexical units. Thus, networks with a power law-like degree distribution are called
scale-free networks (Barabási and Albert, 1999). The exponent of the power law fitted to the degree
distribution of a network is an indicator of the kind of its structuring which, in turn, is related to
its procedural characteristics: Scale-free networks are known for their low vulnerability and fault
tolerance (Albert et al., 1999). Generally speaking, a function f(x) is called scale-free if it remains
unchanged under rescaling of the variable x in the sense that f(ax) = bf(x), a, b ∈ R. Solutions
to this equation have a power law form (Newman, 2005; van Raan, 2005). In the case of degree
distributions, scale-freeness means that there are no typical nodes which represent all others because
of their typical behavior (Barabási and Oltvai, 2004; Newman, 2005).

Power law-like degree distributions are contrasted by the Poisson distribution of node connectivity
in random graphs (Bollobás, 1985). The Poisson distribution models the effect that the probability
to find highly connected nodes decreases exponentially with k. This property also holds for the WS
model — contrary to empirical observations which are better fitted by scale-free power laws (Barabási
and Albert, 1999).

A power law can be fitted to the rank-degree distribution (where rank is determined by the decreas-
ing order of node connectivity) or to the size-degree distribution (based on the number of vertices of
degree one up to the number of vertices of highest degree). Fitting can be restricted to the distribution
of vertex in or out degrees within directed graphs. Note that simple graphs do not distinguish multiple
edges and may, therefore, displace the observed distribution. In the present context, successfully
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fitting a power law indicates that the majority of nodes is poorly connected, while a selected minor-
ity of hubs is very highly connected (Watts, 2003). These hubs are mainly responsible for providing
cohesion as they integrate the majority of nodes into the network (Ravasz et al., 2002). Thus, for a
fixed number of links, the smaller the value of γ, the shallower the slope of the curve in a log-log plot,
the higher the probability of higher connected hubs. In contrast to this, if the number of vertices of a
certain degree decays exponentially with increasing degree, highly connected vertices (i.e. hubs) are
very unlikely or do not exist. Three general remarks on power law-fittings:

• Firstly, although there is a definite relationship of rank (degree) distributions on the one hand and
their cumulative correspondents or size-degree distributions on the other hand, the values of the
exponents of power laws fitted separately to these distributions systematically depart from each
other. This is explained in detail by Adamic (2000) and Newman (2005).

• Secondly, not only does the algebraic sign of a power law’s exponent matter, but also its absolute
value as it determines the existence and range of the expected value and variance of the corre-
sponding theoretical distributions under the assumption of additivity — see Newman (2005) for
these details. Thus, when comparing two studies we do not only need to know which empirical
distribution (rank-degree or size-degree) was fitted, but also by means of which exponent.

• Thirdly, power laws are candidate distributions to be fitted to empirical distributions of, e.g., vertex
degrees. Because of theoretical considerations as well as because of empirical observations or other
restrictions, alternative distributions can be checked for their fitting as well — cf. Wimmer and
Altmann (1999b) for the whole range of discrete probability distributions many of which became
relevant in quantitative linguistics.

In order to derive a model which explains the emergence of power law-like node connectivities in
networks subject to their growth, Barabási and Albert no longer view the number of vertices to be fixed
and being rewired with a uniform probability as assumed by the WS model. Instead, they account for
the dynamics of networks whose vertex set is continually growing by preferably linking new vertices
with already highly connected ones. This preferential attachment produces a so-called Matthew effect
(Simon, 1955) as it predicts that older nodes get rich in links at the expense of younger ones (Watts,
2003). In the case of text networks, the BA model says that newly added nodes tend to be added
with texts providing a high amount of network coherence. As an example think of a citation network
in which new documents tend to cite already frequently cited ones or of the Wikipedia in which new
articles are predicted to preferably refer to already much discussed ones.

The basic idea of Barabási and Albert (1999) is that scale-invariant degree distributions result
from the growth of networks subject to preferential attachment. More specifically, they assume that
the probability P (kv) that a new vertex will be connected to vertex v is a function of the connectivity
kv of v (w runs over all vertices already inserted into the graph):

P (kv) =
kv∑
w kw

(7)

In several experiments, Barabási and Albert (1999) show that networks which grow according to
this model evolve into “a scale-invariant state” in which node connectivity is distributed according
to a power law with an exponent γ = 2.9 ± 0.1. It is worth notifying that the BA model does not
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produce networks which obey the WS model — such a combined model was proposed by Steyvers
and Tenenbaum (2005) (see Section 3).

Although this model overcomes a central aspect of invariability of the WS model, it is open to many
objections as it disregards other aspects of network dynamics. Amongst others, this relates to the fact
that networks grow by the number of vertices and edges which may also decrease or stagnate if their
birth and death rates accord. Another reference point for revising the BA model is its assumption that
the choice of nodes to be linked with newly added ones solely depends on the connectivity patterns
of the former. Actually, it is unrealistic to assume that a new vertex is linked with an old one simply
because of the connectivity rate of the latter. Rather, linkage depends on the opportunities of old
and new nodes to get in contact at all which, in turn, depends on the contexts in which members
of the network can “meet” each other (Watts, 2003). In other words, high connectivity does not
automatically mean to be met by newly added members of a network. Moreover, Sigman and Cecchi
(2002) exemplified topologically quite different graphs which, nevertheless, share the same degree
distribution. In this sense, the BA model is not selective enough. For a comprehensive mathematical
review of the BA model and several alternatives to it see Bollobás and Riordan (2003).

These and related objections led to a stepwise search for further network characteristics which
separate them more precisely from purely random graphs. This includes what is called assortative
mixing and community structure.

2.4 Assortative Mixing

Newman (2002, 2003a) proposes a model in which the probability of a link between two nodes de-
pends on the connectivity of both. This model serves to account for social networks in which vertices
tend to be linked when they share certain properties, a tendency which is called assortative mixing. It
reflects what is circumscribed by the expression birds of a feather flock together. According to Newman
and Park (2003), this principle distinguishes social networks from non-social (e.g. artificial or biolog-
ical) ones even if both are uniformly attributed as small worlds according to the WS model. Newman
(2002) exemplifies this by assortative mixing of vertex degrees. He confirms that the degrees of inter-
linked nodes are highly positively correlated in the case of social, while being negatively correlated in
the case of technical networks (e.g. the Internet) which show disassortative mixing. Newman derives
a correlation coefficient in order to measure mixing in undirected graphs (for r(G) of directed graphs
G see Newman 2002, footnote 35):

r(G) =
1
m

∑
i jiki −

[
1
m

∑
i

1
2(ji + ki)

]2

1
m

∑
i

1
2(j2

i + k2
i )−

[
1
m

∑
i

1
2(ji + ki)

]2 ∈ [−1, 1] (8)

where i denotes the edge ending at vertices j and k of degree ji and ki, respectively, and m = |E|, G =
(V, E). Assortative mixing occurs if r(G) À 0, otherwise, if r(G) ¿ 0, disassortative is diagnosed.

Although r(G) separates social from other types of networks, it does not explain the emergence
of mixing. Like all other coefficients presented so far, it stays on the level of graph indices and, thus,
disregards higher order structure formation within complex networks. The starting-point of such an
extended view is, as Newman and Park (2003) argue, community structure.
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2.5 Community Building

The probability of the members of a social network to interact depends on the social groups (e.g.
family, association etc.) and contexts (e.g. attending the same concert, waiting for the same metro
etc.) in which they commonly participate (Watts, 2003). Sharing group or context membership
raises the probability to interact. Thus, agents entering a network do not necessarily have uniform
chance of interacting with any of its highly connected members — in contrast to what is assumed
by the BA model. Analogously, textual manifestations of social interaction are recursively clustered
according to the various genres and registers (Martin, 1992) they instantiate. Thus, the probability of
an intertextual relation between two texts analogously raises with their common membership in the
same or related genres or registers. The models presented so far do not account for such constraints
on linkage within a network.

Newman et al. (2002) take this as a starting point for studying affiliation networks in order to
overcome this deficit. Affiliation networks are exemplified by networks of collaborating scientists
where membership in the same group or context is defined by co-authorship. Affiliation networks are
modeled as bipartite graphs of group and actor vertices where every actor is linked to the group to
which it belongs. This bipartite model is transformed into a unipartite graph in which nodes denote
agents who are linked if they commonly belong to at least one group. Finally, the unipartite graph is
input to calculating cluster values and average distances as before. A central conclusion of Newman
et al. is that compared to random graphs (according to the model of Erdős & Rényi), clustering is
always higher in such affiliation networks. The reason is that the higher the number of groups and
their extent, the more actor triangles exist within the network. This accords with the expectation, that
groups raise the probability of transitive closures, that is, an interaction of vertices v, w which are
commonly adjacent to a vertex u of the same group. Another implication is that assortative mixing
naturally emerges in networks with community structure although it may also be present in networks
without it (Newman, 2003b). This further implies that networks with community structure supersede
measuring assortative mixing.

The affiliation model leads back to a network model to which all standard indicators of small
worlds are applied. Thus, it does not go far beyond the insights already inherent to the WS model.
A more thorough approach to the formation of significantly recurrent sub-networks — which may rep-
resent, for example, structures of thematically or functionally homogeneous units — is presented by
Milo et al. (2002) and Itzkovitz et al. (2003). They explore subgraphs G′ of a graph G representing
a network which occur more often in G than expected by chance, that is, than in collections of corre-
sponding random graphs of equal order and the same number of edges (Bollobás, 1985) where degree
is Poisson distributed and the vertices have the same single-vertex characteristics as in the input graph.
A class of such subgraphs is called a motif. That is, a motif represents a class of sub-networks whose
number is significantly higher within the input network than in its randomised counterpart. One of
the observations of Milo et al. (2002) and Itzkovitz et al. (2003) is that exploring the motifs of differ-
ent networks allow well distinguishing biological, technical and informational networks as they show
different patterns of subgraphs recurrent within them although being uniformly attributed as small
worlds.

The motif model looks for recurrent network patterns. It is a local model of networking as motifs
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represent rather small subgraphs. Further, the motif model does not look for the recursive organisation
of such motifs into highly connected modules organised into larger, less cohesive units up to the
network as a whole. Such a model has been introduced by Ravasz et al. (2002) and Ravasz and
Barabási (2003). They start from the dilemma that while scale-free networks miss any modularity as
their hubs provide the predominant part of network cohesion, modular networks fail to have a scale-
free degree distribution as they consist of inherently highly connected modules interlinked only by a
couple of links so that vertices tend to have a uniform degree. Ravasz et al. present a graph model
which has both a modular structure as well as a scale-free degree distribution. This graph model has
an inherent hierarchical structure in the sense that it recursively builds around a kernel of a couple of
highly clustered vertices more and more peripheral zones which are decreasingly clustered. A central
observation of Ravasz et al. (2002) is that such hierarchical networks can be distinguished from non-
hierarchical, though scale-free networks by the function C(k) of the cluster coefficient C as a function
of the degree k. Ravasz et al. (2002) observe that in hierarchical networks C(k) decays — other than
in purely scale-free and simply modular networks — as a power law with the degree k, that is,

C(k) ∼ k−θ (9)

Thus, this model reduces the measurement of structure formation within complex networks to a
node-related coefficient. Such a hierarchical, modular network is exemplified by a text network in
which modularity is defined by thematic criteria where the central module represents a general topic
and where peripheral modules denote topics derived from the topic of their immediate neighbor, more
central modules.

As an indicator of structure formation within linguistic networks, θ has been first computed by
Ferrer i Cancho et al. (2004). These and related applications of models of complex networks to
linguistic networks are reviewed within the subsequent sections.

2.6 Networks Evolving in Time

Apart from the BA model, all network characteristics considered so far focus on static graphs as snap-
shots of complex networks at certain points in time. In contrast to this, the BA model and its deriva-
tions (Bollobás and Riordan, 2003) start from a given set of vertices to which in every subsequent point
in time a fixed number of nodes with a fixed number of links is added. Although the underlying model
of preferential attachment already allows deriving degree distributions in correspondence to existing
networks, this model nevertheless departs from empirical findings in support of what Leskovec et al.
(2005) call the densification and shrinking of evolving networks:

• Firstly, Leskovec et al. (2005) observe that complex networks as, e.g., (scientific or patents) citation
networks (cf. Section 3.4) tend to become more and more dense over time. This means that the
average degree of their vertices is increasing with the aging network. Interestingly, Leskovec et al.
(2005) successfully adapt a power law to this growth process with a positive exponent 1 < α < 2

e(t) ∼ n(t)α (10)

where e(t) is the number of edges at time t while n(t) denotes the number of vertices at that point
in time. Leskovec et al. (2005) speak of a densification or growth power law.
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• Secondly, they find that what they call the effective diameter is decreasing over time. The effective
diameter of a network is defined by means of the cumulative distribution of distances between
connected nodes of a network: If (d, #(d)) is the ordered pair of the number #(d) of vertices in
the graph induced by the focal network which are at most d edges separated from each other, the
effective diameter of this network is the number deff of vertices for which deff/n = 0.9 (i.e. 90% of
the vertices in the graph — n = |V |).
As it is possible to generate networks which only have one of these two characteristics, it is worth

considering them separately in empirical studies. Moreover, insofar as these characteristics depart
from assumptions underlying traditional small world models, they give reason to reconsider and fur-
ther develop the apparatus of complex network analysis in terms of time-dependent models — cf.
Leskovec et al. (2005) for two models of such processes. With the accessibility of document networks
as, for example, wiki-based systems (cf. Section 3.6) which make any change of their textual nodes
and links transparent, this diachronic turn becomes a realistic endeavor of corpus linguistic analyses
of complex document networks.

2.7 Summary

The progression of the models discussed in the last four sections mirrors a gradual revision of assump-
tions about constraints on vertex connectivity and structure formation in networks. Starting from the
WS model which does not reflect constraints on degree distributions, extensions regarding aspects of
network growth and community structure were discussed. For the time being, small-world forma-
tion is indicated by “sparsity, a single connected component containing the vast majority of nodes,
very short average distances among nodes, high local clustering, and a power law degree distribution
[. . . ].” (Steyvers and Tenenbaum, 2005, 54). For alternative models of structure formation in large
networks see Newman (2003b) and Bornholdt and Schuster (2003). These models were initially de-
veloped in order to analyse social, biological and technological networks, but also to analyse linguistic
networks. The question is whether there exist principles of linguistic networks which can be explored
by complex network analysis — by analogy to the Zipfian nature of many frequency distributions of
linguistic units explored in quantitative linguistics. The following section reviews studies which deal,
directly or indirectly, with this question.

3 Models of Networking of Linguistic Units
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In this section, small-world models are reviewed which focus on linguistic networks, that is, on
graphs whose vertices represent, for example, words, sentences or texts. Table 4 summarises these
approaches w.r.t the criteria of networking they apply and the network characteristics they compute.
By the majority, these approaches analyse WWW-based graphs whose vertices represent web pages
and whose edges stand for hyperlinks. The remaining set of approaches concentrates on networks
spanned by lexical or sentential units and their lexical or syntactical relations. Generally speaking, all
these approaches should (but often fail to) answer the following questions:

1. What are the criteria of network formation? In other words: What do the vertices represent and
subject to which criteria are they linked?

2. What is the reason of network analysis? In other words: Why are the networks analysed or what is
the research interest in analysing these networks?

3. Which small-world or complex network indicators are investigated?

4. Which reasons are assumed to evoke the small-world property if observed?

5. Is there any account of network growth or of any other aspect of network dynamics?

The review is ordered by increasing complexity of the signs denoted by the nodes of the networks:
It starts with lexical networks in order to approach textual and document networks via so-called
sentence networks.

3.1 Co-Occurrence Graphs and Collocation Graphs

Collocation analysis is a well established field of corpus linguistics (Sinclair, 1991; Stubbs, 1996, 2001).
It follows the Firthian tradition according to which collocations manifest lexical semantic affinities
beyond grammatical restrictions (Halliday, 1966). Collocation analysis aims at discovering seman-
tically related words based on (e.g. similarity) functions of their co-occurrences. In computational
linguistics, several measures exist for distinguishing collocations from insignificant, though recurrent
co-occurrences (Manning and Schütze, 1999). Starting from pairwise computing lexical affinities by
means of such measures, the network perspective is obvious: If two units a, b are related in terms
of collocation statistics as the units b, c are, an indirect relation between a and c is implied even if
not directly confirmed by a collocation of a and c – by analogy with semantic networks (cf. Section
3.3). Following this procedure, a network of units linked by collocation arises whose graph theoretical
representation will, thus, be called collocation network. Following this line of argumentation, several
approaches analyse the topology of large collocation networks (Dorogovtsev and Mendes, 2001; Ferrer
i Cancho and Solé, 2001; Heyer et al., 2006). These networks are seen to be partitioned into a kernel
lexis and more peripheral sociolects or topic specific terminologies. In such networks, lexical units are
not immediately related to every other unit. Rather, there is mediation by means of common words of
the kernel vocabulary in the role of hubs (Kleinberg, 1999) or long-range nodes which have connec-
tions to many local word clusters and, thus, interrelate the different fields of lexis (Tuldava, 1998).
Moreover, the word clusters are themselves seen to be highly interwoven so that short paths emerge
(Bordag et al., 2003). From this perspective, lexis is seen as a complex network which is based in part
on collocational regularities (i.e. beyond sense relations) and, thus, can be asked for its SW properties.
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A first experiment in this area is described by Ferrer i Cancho and Solé (2001) who analyse the
British National Corpus (BNC) from which they extract two graphs:

• Firstly, a so-called co-occurrence graph G1 in which words are linked if they co-occur in at least
one sentence within a span of maximal three tokens — see also Widdows and Dorow (2002) who
explore the BNC corpus in order to extract a co-occurrence graph whose extraction is constrained
by means of PoS relationships.

• Secondly, a collocation graph G2 is extracted in which only those links of G1 are retained whose
end vertices co-occur more frequent than expected by chance.

Generally speaking, a co-occurrence graph is a graph whose edges represent single co-occurrence
events of word forms without abstracting over sets of alike events. In contrast to this, a collocation
graph is a graph whose edges represent significant co-occurrences where significance is attributed
according to evaluating some set of such events by means of some collocation measure.

Ferrer i Cancho and Solé observe the small-world property in the case of both networks — accord-
ing to the WS model and the BA model (see Table 4). But other than according to the BA model, they
separately fitted a power law to the degree distribution of the so-called kernel vocabulary (including
the 5,000 topmost connected vertices) for which they yielded an exponent γ closer to the range of
values predicted by the BA model. Dorogovtsev and Mendes (2001) took this empirical finding as a
starting point and developed a theoretical model of network growth which reproduces both power
laws with a greater exponent of the law fitted to the kernel vocabulary.

By analogy with the model of Ferrer i Cancho and Solé, Bordag et al. (2003) analyse a colloca-
tion graph extracted from a German corpus of newspaper articles (cf. wortschatz.uni-leipzig.de).
Other than Ferrer i Cancho and Solé, they apply a log-likelihood-related measure for exploring col-
locations based on sentence co-occurrences. Their findings confirm the small-world property of the
collocation graph being analysed. The numerical results of this study are published in Heyer et al.
(2006).

3.2 Sentence Graphs

In the last section, co-occurrence graphs were described as a special case of lexical networks in which
words, whose co-occurrences are observed in a given input corpus, are linked. These graphs were
used as a starting point for deriving collocation graphs by retaining only those edges which manifest
collocations (i.e. significant co-occurrences in the sense of some appropriate statistical measure). An-
other point of departure in dealing with co-occurrence graphs is to consider only those co-occurrences
which manifest syntactic dependency relations, e.g. between the verb of a sentence and a noun man-
ifesting its subject. This is the basic building principle of so-called sentence graphs (Ferrer i Cancho
et al., 2004): A sentence graph is a directed graph in which vertices represent lexical units which are
linked if they co-occur at least in one sentence in the role of a modifier (source vertex) and head (tar-
get vertex), respectively. In corpus linguistics, sentence graphs have already been analysed by Hoey
(1991) who spans networks of sentences which are linked if they share at least two lexically cohesive
words.

In the experiments reported by Ferrer i Cancho et al. (2004), directed edges are only considered
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w.r.t power law fitting. As links represent syntactic dependency relations, each input sentence induces
a subgraph of the sentence graph, thus justifying its name.

In order to determine the properties of such networks, Ferrer i Cancho et al. (2004) analyse tree
banks of Czech, German and Romanian sentences annotated w.r.t their dependency structure. They
show that sentence graphs have the small-world property according to the WS and the BA model. Ad-
ditionally, Ferrer i Cancho et al. compute the clustering coefficient C(k) as a function of the degree k.
In Ravasz et al. (2002), the distribution of C over k was analysed as an indicator of latent hierarchical
structures within networks — see Section 2.5. Ferrer i Cancho et al. do not observe this property in the
case of sentence graphs. That is, C(k) does not decay according to a scale-free power law, although
being highly skewed. As a further indicator of structure formation, Ferrer i Cancho et al. observe
disassortative mixing. Therefore, highly connected words tend to be linked with lowly connected ones
— in accordance with what is expected according to the usage of function words, common nouns etc.
An objection against the notion of a sentence graph is the yet unproven conjecture that their structure
is a trivial consequence of patterns inherent to the input sentences so that their analysis is intrinsically
obsolete as the sentences may be analysed in isolation. In general, network analysis has to prove that
reductions of this kind are impossible, that is, that the small-world property and related characteristics
only emerge in the network as a whole.

An extension of the model presented in Ferrer i Cancho and Solé (2001) and Ferrer i Cancho
et al. (2004) is elaborated in Ferrer i Cancho et al. (2005) which starts from a simplified bipartite
“form-meaning” graph in order to derive a network of linguistic units.

3.3 Concept Graphs, Thesaurus Graphs and Association Graphs

Whereas collocation graphs directly build on observable co-occurrences of lexical units in large text
corpora, lexical reference systems or terminological ontologies (e.g. WordNet), thesauri (e.g. Roget’s the-
saurus) and related systems build — sometimes additionally — on expert knowledge of lexicographers
in order to define sense relations (e.g. synonymy, antonymy, homonymy) between words or conceptual
relations between concepts (e.g. hypernymy, co-hyponymy, metonymy). As in the case of collocation
graphs, but other than in the case of co-occurrence and sentence graphs, sense relations are meaning-
based. The difference of collocation graphs and the type of networks to be surveyed in this section
relates to the distinction made by Halliday and Hasan (1976) between unsystematic lexical cohesion
based on collocation and systematic lexical cohesion based on sense relations.

An alternative source of exploring meaning-based relations of lexical units which relate to, but are
not identical with collocations, are regularities of association or, more specifically, word priming: In
the case of word priming, lexical units are used as primes in order to let test persons associate sense
or form-related words (Kintsch, 1988). In the line of this argumentation, association graphs of lexical
units are built whose vertices represent primes and responses linked from the former to the latter.

Based on these preliminary considerations, the following graphs can be distinguished:

• Thesaurus graphs are graphs in which vertices denote words, whereas edges represent sense rela-
tions thereof (cf. Kinouchi et al., 2002).

• In contrast to this, concept graphs are graphs in which vertices represent concepts, whereas edges
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denote conceptual relations thereof.

• Finally, association graphs are graphs in which vertices denote words — as in the case of thesaurus
graphs —, whereas edges represent association or priming relations as observed in cognitive-
linguistic experiments.

As these preliminary considerations motivate a network perspective on sense relations and associa-
tion data, questions w.r.t structure formation within such networks and their overall topology likewise
arise:

1. In the case of thesaurus graphs based on the expertise of lexicographers and corpus linguists,
respectively, network properties can be interpreted as indicators of thesaurus quality or consistency.
As networks of this kind represent lexical semantic knowledge of a given language, their analysis
also provides an access to the semantic system of that language, that is, to the overall organisation
of its lexical subsystem (Sigman and Cecchi, 2002).

2. In the case of association networks, a corresponding argumentation applies: According to the hy-
pothesis that association is one of the principles of memory organisation, the question is raised
which network topologies support an efficient organisation in terms of time and space complexity.
This is the starting point of Motter et al. (2002) who interpret the small-world property of associa-
tion networks as an indicator of efficient information storage and retrieval (cf. Sigman and Cecchi
2002; Steyvers and Tenenbaum 2005): Firstly, the existence of many local clusters is seen as a
necessary condition of effective associations. Secondly, the existence of short path lengths is seen
to guarantee fast information search (or spreading activation) since any “pieces of information”
are on average separated only by a couple of associations — irrespective how different they are.

In addition to collocation graphs, these two research directions — the more language- and the
more memory-oriented one — leave the narrow view on word-to-word relations in order to focus
whole networks thereof and, thus, lexical subsystems based on corpus-linguistic collocations, cognitive
associations or lexicographical sense relations. This section reviews these kinds of approaches. First
of all, this includes the study of Motter et al. (2002) who analyse the so-called Moby thesaurus in the
form of its e-text release as part of the Project Gutenberg (cf. ftp://ibiblio.org/pub/docs/books/
gutenberg/etext02/mthes10.zip). Motter et al. extract an undirected graph from this thesaurus
in which vertices represent root words which are linked if the one word occurs in the root word list
of the other (cf. also Holanda et al., 2003). As shown in Table 4, network analysis indicates that
this thesaurus has the small-world property. Regarding scale-freeness, Motter et al. do not directly
fit a power law, but observe a crossover from a more exponential behavior of P (k) to a more power
law-like behavior for higher values of k (with γ = 3.5). Albert and Barabási (2002) report on a related
experiment of Yook, Jeong & Barabási in which a thesaurus graph (which also shows the small-world
property) is extracted from the Merriam-Webster dictionary by exploring synonymy relations.

Sigman and Cecchi (2002) extract a concept graph from WordNet (Miller et al., 1990). They extract
a graph of lexicalised concepts or word meanings in which vertices stand for synsets and edges for their
meaning relations — ‘synset’ is a short form of synonym set representing a single word meaning (cf.
Miller et al., 1990). In such a graph, edges are typed according to the meaning relation they represent.
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Sigman and Cecchi take antonymy, hypernymy, meronymy and polysemy relations into account — note
that antonymy and polysemy relations are symmetric, whereas hypernymy and meronymy relations
have hyponymy and holonomy as their inverses. Nevertheless, the concept graph extracted by Sigman
and Cecchi is an undirected graph whose vertices solely represent noun meanings.

Generally speaking, hyponymy relations induce a kernel hierarchical structure of the concept graph
extracted from WordNet. This hierarchical skeleton is superimposed by polysemy relations defined
between any word meanings whose synsets share at least one (polysemous) word form. Sigman and
Cecchi explore these relations as an additional source of edge generation. Their findings indicate that
the inclusion of polysemy relations convert the concept network into a small world whose degree
distribution follows a power law and in which subgroups of fully connected meanings emerge — for
numerical details see Table 4. This result fails to appear when antonymy or meronymy relations are
added to the hierarchical skeleton instead of the polysemy relations. Sigman and Cecchi conclude that
polysemy has the effect of generating the small-world property and view this to be an explanation of
its emergence in natural language. In other words: Polysemy is seen to convert hyponymy-based
concept networks into compact, clustered graphs which allow efficient storage and retrieval of lexical
knowledge.

A comprehensive network analysis of lexical-semantic units is performed by Steyvers and Tenen-
baum (2005). They analyse networks based on Roget’s thesaurus, WordNet and free-association data of
lexical units:

• Experiment I: Steyvers and Tenenbaum start with an association graph whose vertices denote cue
and response words which are linked whenever at least two participants of the underlying free-
association experiment associated the same response to the same input cue. This graph is by
definition simple and undirected. Steyvers and Tenenbaum derive a directed graph from this
graph by means of its orientation along the association from the cue to the response word. Thus,
two variants of an association graph are analysed.

• Experiment II: As Roget’s thesaurus defines a bipartite graph whose top-mode vertices represent
semantic categories and whose bottom-mode vertices stand for words, Steyvers and Tenenbaum
derive a unipartite thesaurus graph thereof in which words are linked whenever they are commonly
classified by at least one category. Roget’s thesaurus is also explored by Leicht et al. (2006) for the
task of complex network analysis.

• Experiment III: Essentially, WordNet also has a bipartite structure based on the many-to-many re-
lation of word forms and synsets. Thus, word form-to-word form edges (denoting, for example,
antonymy relations) have to be distinguished from word form-to-synset and synset-to-synset edges
(representing, for example, hypernymy or meronymy relations). Steyvers and Tenenbaum explore
this bipartite structure in order to extract a unipartite graph of vertices denoting word forms (al-
beit they separately display 〈d〉 of the set of synsets). As Steyvers and Tenenbaum extract a graph
of lexical, but not of conceptual nodes, it is not a concept graph — nevertheless we will retain this
label as the predominant source of linkage are semantic relations as represented by means of links
of synsets.

Steyvers and Tenenbaum compute the average degree, average geodesic distances of all vertices
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(experiment I) or a sample of 10,000 vertices (experiment II and III), diameters, cluster values CWS

and power law exponents γ for all four input graphs — see Table 4 for the results. All computations
were made for the largest strongly connected component which covered at least 96% of the vertices.
All networks demonstrate the small-world property, according to the WS model as well as according
to the BA model. But Steyvers and Tenenbaum (2005) go beyond the present apparatus of complex
network analysis as they develop a model of network growth which departs from the BA model of
Barabási and Albert (1999) in that it additionally focuses on cluster formation as observed according
to the WS model. In order to do that, they start from a linguistic assumption on the linkage of words
newly added to a network at a given point in time. This model hints at promising extensions of the
BA model from the point of view of (cognitive) linguistics and, thus, may serve as a starting point for
critically extending complex network analysis in the light of linguistic research.

All studies surveyed so far focused on networking of linguistic units below the text level. The
remaining three sections review studies which analyse text or document networks instead.

3.4 Citation Graphs and Sitation Graphs

The quantitative study of networks of scientific documents linked by bibliographic relations is one of
the earliest approaches to document networking (Garfield, 1963; de Solla Price, 1965). This field of
research is separated into informetrics, bibliometrics, scientometrics and webometrics depending on the
provenance of the not necessarily textual units whose linkage is studied (cf. Björneborn, 2004):

• Informetrics is the most encompassing field of applying quantitative methods to studying processes
of information transfer in networks of whatever information units — irrespective of the underlying
transfer medium (Ravichandra Rao, 1996).

• In contrast to this, bibliometrics “is the quantitative study of literatures as they are reflected in
bibliographies” (White and McCain, 1989, 119). Other than webometrics, it is mainly based on
printed, but not on WWW data (Bar-Ilan, 2001).

• Scientometrics is a kind of bibliometrics with a focus on scientific communication. It aims at evalu-
ating the impact factor of scientists, scientific discoveries or publication media. Further, it explores
topological regularities of scientific document networks and maps the topological relatedness of
authors, documents and publication media in order to derive recommendations for improving the
retrieval of scientific publications (cf. Hummon and Doreian, 1989; Larson, 1996; Ravichandra
Rao, 1996).

• With the advent of the WWW, the hyperlink-based classification of web documents became a fur-
ther research topic not only in web mining, but also in webometrics. Its basic idea is to apply the
methodical apparatus of bibliometrics to web documents and their hyperlinks by analogy with sci-
entific documents and their citation relations — in spite of the many differences due to possibly
bidirectional hyperlinks, the lack of peer reviewing and of knowledge about the motives of hyper-
linking (for a critical review of this concept cf. Prime et al., 2002). According to Björneborn and
Ingwersen (2001), webometrics aims at exploring the regularities of the content and structure of
web documents and, thus, is connected to web content and structure mining (Kosala and Blockeel,
2000).
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Figure 4: Two fundamental relations within citation networks according to Fang and Rousseau (2001):
the bibliographic coupling of A and B via x and the co-citation of A and B via y.
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Figure 5: Co-citation and bibliographic coupling chains (cf. Björneborn, 2004).

The present section focuses on the scientometric study of networks of scientific documents (e.g.
conference papers, journal articles, reviews, book chapters, scientific notes etc.) as part of scientific
communication. These approaches are split into two groups of which only the second will be reviewed
— for an overview of computational linguistic approaches to the first group cf. Leopold (2005):

• Firstly, there exists a group of approaches which explore the vocabularies of texts as a source of
intertextual linkage (Leydesdorff, 2001).

• Secondly, there is the group of approaches which explore citation and other reference relations as
a source of intertextual linkage provided that they are explicitly marked within the input texts.

The latter approaches deal with referential intertextuality in the sense of Heinemann (1997), while
the former can be said to focus on typological intertextuality.

Input to the scientometric way of network analysis are so-called citation networks in which nodes
denote scientific publications which are linked from the citing to the cited publication. By exam-
ple of the OpCit project (opcit.eprints.org) based on the Los Alamos Eprint Archive (LANL, cf.
xxx.lanl.gov), Harnad and Carr (2000) speak of “citation linked online digital” corpora which can
easily be made an object of complex network analysis. Nevertheless, it is worth noting that the ma-
jority of these approaches explore bibliographic records (White and McCain, 1989) as collected, for
example, by the Institute for Scientific Information (ISI; cf. Garfield (1994), scientific.thomson.
com/free/essays/citationanalysis/scientography or www.isinet.com) and, thus, metadata de-
scriptions without exploring the underlying documents directly — unless approaches to referential and
typological intertextuality are amalgamated as, for example, by Glenisson et al. (2005). The ISI inte-
grates the Science Citation, the Social Science Citation and the Arts & Humanities Citation Index. It
covers articles, notes, letters, reviews, editorials, corrections, meeting-abstracts and related document
types of scientific communication (Sigogneau, 2000). Note that, besides proceedings, scientometrics
only occasionally analyses citation relations of books, but tends to concentrate on scientific articles
and related types of publications (White and McCain, 1989). WWW-based resources of citation net-
works are digital libraries as, for example, CiteSeer, CiteBase or, as a kind of social software-based
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digital library, CiteULike.
Citation networks allow distinguishing two fundamental scientometric relations as exemplified in

Figure 4:

• First of all, two documents A and B are said to be bibliographically coupled if there exists at least
a third document x commonly cited by A and B (Kessler, 1963). In terms of scientometrics: two
citing items are bibliographically coupled if they have at least one reference (i.e. cited item) in
common (Glänzel and Czerwon, 1996). Coupling relations induce bibliographic coupling networks
or BC networks for short. These networks are induced by analogy with scientific collaboration
or co-author networks (van Raan, 2005) in which author nodes are linked if they co-authored
at least one publication. Within BC networks, link weighting naturally arises from counting and
appropriately standardising the number of common references of two publications. BC graphs are
inferred from BC networks by means of a bipartite graph model in which the top mode consists of
vertices representing so-called references cited by items represented by vertices of the bottom-mode
— see Figure 5. This allows interlinking any two bibliographically coupled publications whenever
the corresponding vertices are linked to the same top-mode vertex. Next, publications sharing the
same reference are collected into so-called BC clusters — by analogy with collaboration clusters in
co-author networks whose affinity is affected by at least one publication whose authorship they
share. Further, BC chains are paths (vi0 , ej1 , vi1 , ej2 , . . . , vin−1 , ejnvin) in which neighboring vertices
vij , vij+1 , j ∈ {0, . . . , n− 1}, denote bibliographically coupled items — see Figure 5.

As references are nothing else but publications, BC networks are — in spite of their analogy to
co-author networks — homogeneous in the sense that they consist of nodes of the same sort. Note
further that any inference of a BC network necessarily includes two time windows: the window of
those publications whose references are studied and the window spanned by the publication dates
of these references. Redner (1998), for example, analyses a one year time window of references
cited by publications within the years 1981-1997. In contrast to this, van Raan (2005) analyses a
one year time window of publications and their references within the preceding publication years.

• A second type of relation is co-citation: two documents A and B are said to be co-cited if there
exists at least a third document y commonly citing A and B (cf. Small, 1973) — see Figure 4.
By analogy with BC networks, co-citation relations induce co-citation networks or CC networks for
short. Further, CC graphs are inferred from the same bipartite model as BC graphs, but with the
reverse perspective on the top-mode units. Likewise, CC clusters and chains are defined according
to the same analogy — see Figure 5.

Obviously, citation relations are not symmetric and, thus, induce directed edges, while co-citation
and bibliographic coupling are symmetric and, therefore, are represented by undirected edges. Further,
edges representing co-citation or bibliographic coupling relations are straightforwardly weighted by
means of functions of the number of their occurrences (Small, 1999). Note also that citation patterns
vary among scientific communities so that findings in one of them do not necessarily characterise an-
other one adequately. This observation is important when it comes to normalise numerical indicators
in order to secure the comparability of different communities (Pinski and Narin, 1976).
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In citation networks, the in-degree distribution is induced by the number of times a publication is
cited, whereas the out-degree distribution is induced by the number of citations a publication is making.
In this context, Redner (1998) distinguishes two types of distributions within citation networks related
to the scale-freeness of complex networks:

• firstly, the so-called Zipfian rank-frequency distribution of the number of citations ranked in de-
creasing order where the first rank denotes the most cited publication down to those publications
which are only cited once or not at all;

• secondly, the size-frequency distribution of the number N(x) of publications with x citations which
relates to the Lotka law of scientometrics which is a power law yx = c/xα where yx is the number
items with x occurrences of the focal type (Rousseau and Rousseau, 2000).

In the case of co-citation networks, successful fitting a power law to a size-frequency distribution
indicates that the majority of (pairs of) documents are not co-cited at all, many others are co-cited
only once etc. till the region of those hubs are reached which are co-cited very often. Co-citation
analyses often count only co-citations whose frequencies are beyond a certain threshold above
which they are regarded as a significant source of (topical) relatedness (White and McCain, 1989).

• Additionally, a cumulative-frequency distribution can be considered which relates to Bradford’s
law in scientometrics.

In the case of the rank-frequency distribution, Redner (1998) fits a power law with exponent
γ ≈ −0.5 for the part of the distribution from rank 1 (8, 904 citations) to rank 12,000 (of about 85
citations). For large x, this corresponds to fitting a power law N(x) ∝ x−α to the corresponding
size-frequency distribution with α ≈ 3. These findings indicate that nearly one half of the papers is
un-cited. In the area of webometrics which analyses hyperlinks by analogy with citations as sitations
(see below), Prime et al. (2002) find three regimes of the out-degree distribution of external links
within web pages which allow distinguishing, firstly, general portals (first regime) with a high number
of external links from, secondly, more specialised portals and, thirdly, from web documents of varying
size with few internal and external links. Prime et al. successfully fit a power law to the distribution
of incoming links, that is, to the in-degree distribution of vertices representing web pages.

BC networks are analysed, for example, by van Raan (2005) — see Table 4. He explores a corpus
of 1, 099, 017 publications (manly articles, reviews, notes and letters) citing 4,876,752 references. Van
Raan considers three degree distributions: Firstly, he adapts a power law to the in-degree distribu-
tion of references, that is, to the distribution of the number of citing publications per cited reference.
Secondly, he considers the number of references per publication in order to adapt an out-degree distri-
bution in the sense of the bipartite graph model presented in Figure 5. Thirdly, he studies the number
of bibliographically coupled documents per publication. The central observation of van Raan is that
within this corpus, power laws are only successfully fitted if all references are taken into account,
while scale-freeness disappears when references are separately accounted by their age. He concludes
that references to “younger” publications have other functions (e.g. including topic specific refer-
ences) than references to older ones (e.g. referring to “classic” works in the corresponding field). This
observation points to the significance of time dependent, nonstationary characteristics of document
networking. In this sense, Seglen (1992) describes changes of citedness of articles dependent on their
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age where “citedness declines steadily as a function of time since publication” indicating increasing
obsolescence where only a few articles are accepted as classic work for a longer time period.

Citation, BC and CC networks are easily made input to multivariate statistics. Based on matrices
of co-citation or coupling frequencies, correlation coefficients of documents can be computed as input
to cluster or principle components analysis in order to derive clusters or factors, respectively, which
represent sets of topically or otherwise related documents (Larson, 1996). Any such cluster can then
be described in terms of its size, the mean year of publication of its elements or according to the
distribution of these elements over the set of scientific genres. That is, citation, BC and CC networks
are input to deriving large sub-networks thereof based on publication medium-, genre-, document
type- or topic-related criteria. Hummon and Doreian (1989) analyse, for example, a citation network
which solely consists of publications on DNA theory. Likewise, Schummer (2004) analyses citation
networks incorporating articles on nanotechnology only. Further, citation networks may be confined
to certain publication media (e.g. journals or proceedings) — leaving out other media of scientific
communication (cf. Seglen, 1992) — or certain pragmatic parameters (e.g. common author, time or
location of production etc.) (cf. Sigogneau, 2000).

Based on these considerations, the following approaches can be distinguished which focus on
structure formation derived from citation relations: Glänzel and Czerwon (1996) present a method
for identifying research topics as clusters of bibliographically coupled items. They define core docu-
ments as items with a higher-than-average number of links. Core documents are analysed w.r.t their
distribution over journals, scientific subfields and corporate addresses (e.g. of universities). In sum-
mary, Glänzel and Czerwon analyse the formation of sub-networks within BC networks and their
macro-level segmentation according to the criteria just mentioned. Identifying (mainstream) research
topics and exploring their life cycle are further parts of this agenda. A further topic is to identify so-
called sleeping beauties (van Raan, 2004), that is, publications which remain unnoticed for a longer
period of time and then, suddenly, get cited to a high degree. A network perspective on the contri-
butions to conference series is provided by Chen and Czerwinski (1998) who apply Latent Semantic
Analysis (Landauer and Dumais, 1997) in order to automatically link topically related documents.
Chen (1999) applies this apparatus to co-citation networks in order to explore predominant research
fields as sub-networks. Small (1999) analyses co-citation chains in order to examine cross-disciplinary
citations interrelating document networks of different scientific disciplines. He applies cluster analysis
for recursively identifying sub-networks of high co-citation density which are traversed by means of
pathways (Björneborn and Ingwersen, 2001) of cross-disciplinary citations.

A further research topic is the temporal dynamics of scientific communication. This relates, for ex-
ample, to studying the life cycle of scientific fields based on their citation relations (Otte and Rousseau,
2002). As the set of scientific publications is rapidly growing, citation-based clusters are continually
shaped by newly entering or dropping out documents. They may merge or split into new clusters or
may even disappear completely (White and McCain, 1989).

Distributions of URL-based references to web documents within scientific articles are studied by
Brown (2004). He gives a perspective on integrating document networks within more traditional
and online media and, thus, leads over to the study of so-called sitations. In webometrics, hyperlinks
between web documents (e.g. pages or websites) are analysed by analogy with citation relations as
sitations (Rousseau, 1997; Faba-Pérez et al., 2003; Björneborn, 2004). Rousseau (1997) shows that
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Level Unit of Research Approaches

macro level network complex network analysis

meso level sub-network exploring web communities, broad topics etc.

micro level web document segmentation & categorisation of websites and pages

Table 5: Reference points of document network analysis by example of the WWW.

the distribution of sitations obeys a power law with an exponent of 2.345. He analyses the distribution
of the number N(x) of websites with x sitations, that is, with x inlinks. Earlier, Larson (1996) applied
co-citation analysis in order to cluster topically related pages. Inlink distributions are, further, analysed
by Thelwall and Tang (2003), Tang and Thelwall (2004), Li et al. (2005a,b) who concentrate on
academic websites in order to measure the impact factor of universities and their departments subject
to situational parameters and membership in scientific disciplines. Outlink distributions are analysed
by Ajiferuke and Wolfram (2004) who concentrate on web pages of top level domains. More recently,
Björneborn (2004) has extend webometrics by defining co-linking and co-linked pages by analogy with
bibliographic coupling and co-citation, respectively — see Figure 5. He explores co-linkage chains by
analogy with co-citation chains (Small, 1999) in order to identify pathways of topically related, though
un-co-linked pages (cf. Garfield, 1994). Björneborn gives a comprehensive scientometric perspective
on the study of networking in WWW-based scientific communication and, thus, can be seen as leading
over to the study of document networking in the WWW as surveyed in the next section.

3.5 Web Graphs

A well explored area of network analysis is the World Wide Web (WWW). From the beginning of
statistical analyses of small worlds on, it has been made an object of this kind of research (cf. the survey
of Newman 2003b). Seen as a network of hypertext documents in the form of websites or pages,
the WWW is by now the best studied document network. Because of the many surveys of WWW-
oriented studies — cf., for example, Chakrabarti (2002) and Baldi et al. (2003) for two excellent
books surveying this area — the present section concentrates on a general account of their reference
points, that are, macro, meso and micro level units — see Table 5 — as input of what is called web
content and structure mining (Kosala and Blockeel, 2000):

• On the macro level, the WWW as a whole is made an object of complex network analysis. The
starting point of this kind of research is, more or less explicitly, the seminal paper of Botafogo
et al. (1992) on so-called hypertext graphs. Botafogo et al. generally describe hypertexts in terms
of vertices and edges denoting hypertext modules and their hyperlinks, respectively, in order to
analyse their structural characteristics in terms of compactness and hierarchal structure formation.
In web mining, this graph-theoretical format is utilised in order to represent the WWW or parts
of it by means of so-called web graphs (Chakrabarti, 2002), that is, directed graphs whose vertices
denote pages and whose edges denote hyperlinks in-between (Björneborn and Ingwersen, 2001)
— cf. Park (2003) who speaks of hyperlink network analysis when it comes to exploring the WWW

as a graph. Although the page level is the accentuated reference point of web-based link manifes-
tation and, thus, of networking in the WWW, its networking may also be observed on the level
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of websites and conglomerates thereof when viewed as vertices — cf. the layered graph model of
Mukherjea (2000) and especially the document model of Björneborn (2004) and Björneborn and
Ingwersen (2004) who describe a graph model in terms of webometrics which bridges analyses
of the WWW in general and those of document networks in scientific communication. Generally
speaking, macro level studies ask for the principles of the overall topology of the WWW (Barabási
et al., 1999) in terms of clustering and geodesic distances (Adamic, 1999), its diameter (Albert
et al., 1999), the degree distribution of pages (Barabási and Albert, 1999; Kleinberg et al., 1999;
Adamic and Huberman, 2001; Barabási et al., 2000) and the web’s characteristic motifs (Milo
et al., 2002). A seminal paper in this area is Adamic (1999) who analyses the SW property of
the web. He refers to websites as the operative units for vertex extraction where a site A is seen
to be linked with a site B if it contains a page linked with a page in B. The resulting graph is
analysed in three variants: As an undirected, as a directed and as a subgraph containing solely
websites of a certain top level domain (i.e. .edu). A purely structural perspective on the overall
topology of the WWW is induced by its so-called bow tie-structure (Broder et al. (2000)) which
segments the WWW into four topological regions of roughly equal size (cf. Baldi et al., 2003):
First, the Strongly Connected Component (SCC) contains all pages that are reachable from each
other by directed paths. In contrast to this, the IN component includes all pages that can reach
members of the SCC, but cannot be reached by them in terms of directed paths. Analogously, the
OUT component contains all pages that are reachable from the SCC, but are not linked with any
member of the SCC. Finally, there are, amongst others, components consisting of pages which are
disconnected from the SCC as well as from the IN and OUT component. This model sheds light on
the necessity of segmenting sub-networks of the WWW which obviously vary w.r.t their structural
characteristics. This is done on a meso level of analysis:

• On the meso level, the WWW is studied as a heterogeneous network which does not simply consist
of pages and their links, but is clustered into large, functionally as well as thematically hetero-
geneous sub-networks whose segmentation is the focus of interest on this level. Gibson et al.
(1998) and Flake et al. (2000), for example, extract so-called web communities, that is, networks
of websites which have more links to members of the same community than to sites outside of
it. Web communities are induced by exploring the link structure of pages. In contrast to this,
Chakrabarti et al. (2002) explore so-called broad topics manifested by large clusters of themati-
cally homogeneous web pages whose size distribution they study. See also Mukherjea (2000) who
likewise distinguishes sub-networks in terms of thematic criteria. A very interesting observation of
Chakrabarti et al. (2002) as well as of Pennock et al. (2002) is that generically or topically demar-
cated sub-networks of the WWW show strikingly different regularities of their degree distributions
in comparison to the WWW as a whole. This observation hints at the genre/register sensitivity
of network analyses and, thus, on the necessity to further investigate and extract significant sub-
networks of the WWW as the proper input of complex network analysis. Another reference point
on the meso level (as a byproduct of inferring web communities and related units) is the classifica-
tion of vertices of web graphs in terms of so-called authorities (i.e. “popular” pages linked by many
other pages) and hubs (i.e. pages which list links to many authorities) Kleinberg (1999).

• The genre-sensitivity of large scale network characteristics hints at the fact that, by analogy with
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texts, hypertexts manifest functionally/thematically demarcated hypertext types where instances of
the same type tend to be similarly structured, while instances of different types are more likely
dissimilarly structured. The general idea is that knowledge about hypertext types and their proto-
typical instances facilitate hypertext production and reception. This assumption is reflected by the
notion of a web genre (Dillon and Gushrowski, 2000; Firth and Lawrence, 2003) which is defined
in functional terms as a type of web documents serving a certain recurrent function of web-based
communication. Manifestations of webgenres and related units are, more or less explicitly, anal-
ysed in terms of compound documents (Eiron and McCurley, 2003), logical domains (Li et al., 2000),
logical documents (Tajima and Tanaka, 1999; Li et al., 2002) or multipage segments (Craven et al.,
2000). In the majority of cases, instances of web genres are analysed on the level of single pages
(Rehm, 2002). A smaller group of approaches analyses instances of webgenres in terms of websites
as systems of pages whose links are likewise analysed in terms of genre-specific functions (Mehler
and Gleim, 2006).

This series of approaches of increasing resolution of the units being segmented hints at the neces-
sity to further study the functional/thematic structures of elementary web documents in order to better
understand their networking. This is due to the fact that linkage of a page may be due to its member-
ship in a web community, its role in manifesting a broad topic, its function as a hub or authority or as
a component of a website manifesting a certain webgenre. Generally speaking, these considerations
hint at the need to further integrate linguistic models of document types in order to ground document
network analysis not only in terms of (social science and) statistics, but also of linguistics. Future elab-
orations of this apparatus will need to follow this direction in order to better grasp the genre/register
sensitivity of the characteristics of document networks. This includes also networks whose generation
is restricted by the kind of web-based software as surveyed in the subsequent section.

3.6 Social Software-Based Networks

With the advent of the so-called Web 2.0 (O’Reilly, 2005; Bächle, 2006), a further, hardly foreseen
media change takes place. In some areas of the web, a kind of a ‘content provider’ who generates her
offer of information in cooperation with other members of the same social network takes the place of
the classical WWW user in the role of a passive information recipient. That is, some parts of the web
evolve as a medium of distributed cognition (Hollan et al., 2000) by utilising so-called social software
which covers, amongst others, fora, networked blogs and countless wikis of knowledge or technical
communication. The central aim of social software is to support the web-based buildup and self-
organisation of social networks in the form of virtual communities of members which — without the
need of face-to-face communication — cooperatively/competitively perform some task (e.g. writing
a technical documentation, programming open source software, building an electronic encyclopedia
etc.) without involving any kind of central supervision. In this sense, one may speak of social software-
mediated communication. In this section, we review approaches to document networks which were
cooperatively produced by means of some social software. This includes internet mailing lists (IML),
fora, networked weblogs and wiki-based document networks. Other areas of the web 2.0 relevant for
document networking, not taken into consideration, include social bookmarking and social networking
systems.
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3.6.1 Web Fora

A (web) (discussion) forum or (electronic bulletin) board is a website which supports asynchronous
discussions on certain topics within groups of posters who possibly registered to the forum (Bächle,
2006; Fisher, 2003). A forum and its sub-fora are usually bound to a certain topic and its sub-topics,
respectively (Bächle, 2006). It is built around the postings of its posters, where postings on the same
subject as part of the same discussion are organised into a thread (see below). In this section, we will
review approaches to forum-based document networking by example of Usenet newsgroups.

Usenet newsgroups span a worldwide system of electronic bulletin boards where each newsgroup
organises discussions of a certain topic (Bar-Ilan, 1997). Usenet is hierarchically organised in a way
which is reflected by the newsgroup names (Meinel and Sack, 2004; Smith, 2003). A newsgroup
name is prefixed by the name of the topmost group to which the newsgroup belongs. It is followed by a
sequence of period-separated subgroup names indicating — with increasing thematic resolution — the
topic of the newsgroup (Bar-Ilan, 1997). For the number and diversity of newsgroups see (Kot et al.,
2003; Smith, 2003). Each newsgroup may organise several discussions possibly in parallel to each
other. Each discussion is organised as a thread which finally consists of single postings, i.e. messages
or news items. As a user can answer to a message posted before, a post order of hierarchically threaded
postings emerges. That is, a thread is a hierarchically ordered series of news items usually about a
single topic instantiated by the thread’s root or initial message where succeeding messages uniquely
refer to a previous one. In its header, a news item identifies its submitter and subject while its body
contains the message content. As there is no subscription procedure for newsgroups, one can easily
participate in a discussion via email, although newsgroups may be moderated. The moderator may
decide, for example, to crosspost a message, that is, to post it in different newsgroups.

Usenet contains science-related newsgroups and, thus, supports scientific communication. The
BIOSCI/bionet newsgroup, for example, “is a series of freely accessible electronic communication fo-
rums (i.e., electronic bulletin boards or “newsgroups”) for use by biological scientists worldwide” (cf.
www.bio.net/docs/biosci.FAQ.html — cf. also Kot et al. 2003). Its aim is “to promote communica-
tion between professionals in the biological sciences” (ibid.). But as Usenet postings are not refereed,
they cannot be compared with related forms of collaborative, peer-reviewed publication in scientific
communication (Bar-Ilan, 1997). Moreover, other than in Wiki-based systems, once statements are
posted in a newsgroup, they are, usually, no longer editable, let alone collectively.

Reflecting the thematic focus of Usenet newsgroups, related models of document networking con-
centrate on the time-related principles of postings on single topics. Bar-Ilan (1997), for example,
analyses a corpus of about 16,000 Usenet messages on the mad cow disease in a period of hundred
days starting around the beginning of this “food scandal”. She studies the growth function of topic-
specific messages within certain periods of time in order to analyse time-dependent phenomena as
topic spread and burst.This approach is related to the study of Sengupta and Kumari (1991) of the
growth rate of AIDS related publications. Other than Bar-Ilan, they observe an “epidemic”, exponen-
tial growth of such publications during the period of 1976 to 1986. In a related context, but with a
focus on the WWW, Bar-Ilan and Echermane (2005) analyse web pages linking to contributions on
the anthrax scare.

The diversity of newsgroups is studied by Kot et al. (2003) by example of a group of 107 bioscience
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related newsgroups as can be downloaded from ftp://ftp.bio.net/BIOSCI/ARCHIVE. They show
that the number of postings of contributors ranked by decreasing number obeys Zipf’s law. Kot et al.
develop a model in terms of a stochastic process which accurately predicts the contribution of posters
w.r.t their number, size and the total number of postings within the simulated newsgroup.

A power law-like characteristic of newsgroup postings is explored by Agrawal et al. (2003) who fit
a power law (with exponent γ ≈ 0.8) to the ranked-size distribution of (the number of) postings per
author. But other than the studies just reviewed, Agrawal et al. do not consider document, but agent
networks in which nodes denote posters which are linked if one has quoted from an earlier posting
written by the other.

3.6.2 Internet Mailing Lists

An Internet Mailing List (IML) as uniquely identified by its name and address collects the list of email
addresses of its members. A member can post a message which is then sent to all other members
unless censored by the list moderator. The reason to submit may be to initiate a discussion by posting
a question, hypothesis, or an issue for debate (Kuperman, 2005). Inter-discussion links occur subject to
referential links (e.g. references to or quotations from preceding discussions) or thematic relatedness
and, thus, give rise to networking beyond single discussions. As topic-based links are not explicit, they
need to be explored in order to contribute to a networked corpus. The members of a list can actively
participate in a discussion or passively follow it in the role of a so-called lurker. As submitters answer
to messages posted before, a hierarchically threaded structure of email postings emerges by analogy
with web fora. That is, an IML thread is a hierarchically ordered series of messages discussing a single
topic with a unique initial message. Alternatively, threads may be simply linearly ordered as in the
LINGUIST LIST in which postings are linked as sequels of the same discussion. According to Zelman
and Leydesdorff (2000), threaded email messages are the fundamental communication units of IML-
based computer-mediated communication (CMC). In scientific communication, they are characterised
by their size and thematic homogeneity as their submitters are known for their expertise (Thelwall
and Wouters, 2005) clearly affecting the self-organisation of these IMLs although the extent of this
impact has still to be proven (Zelman and Leydesdorff, 2000).

IMLs are, usually, moderated to a higher degree than newsgroups, but to a lower degree than
conventional scholarly publications. Moderation is based on publication policies. It may concern the
format, content and size of postings as well as preventing repeated discussions. Comparable to news-
groups, but other than in conventional scholarly publications, IML-based postings are less restricted
w.r.t their number, size, frequency and related restrictions induced by the publishing medium. On the
other hand, scholarly IMLs are characterised to have more qualified contributions than unmoderated
newsgroups (Hernandez-Borges et al., 1998). Thus, moderated IMLs of scientific communication can
be settled in-between less moderated newsgroups and scholarly publications which are restricted in
terms of their access, number, size, and frequency of publication (Kuperman, 2005). For the time
being, a standard format for archiving and retrieving IMLs is missed (Zelman and Leydesdorff, 2000)
as well as in the case of web fora.

Kuperman (2005) reports on a bibliometric analysis of the productivity of two IMLs. He analyses
a corpus of 5, 016 emails of the LINGUIST LIST (cf. linguistlist.org/issues/master.html) and a
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corpus of 3,023 emails of the History of the English Language List (cf. listserv.linguistlist.org/
archives/hel-l.html). Kuperman shows that members of the power law family, e.g. Lotka’s law,
Zipf’s law, Zipf-Mandelbrot’s law or the Yule, Yule-Simon or the Waring distribution (Simon, 1955;
Rapoport, 1982; Wimmer and Altmann, 1999b), poorly fit the ranked-size distribution of postings
over authors in unmoderated lists. Goodness of fit is better in lists with a higher level of moderation.
This result is in support of locating IMLs in-between the area of unmoderated newsgroups and conven-
tional scholarly publications. It was the latter area for which power laws have been successfully fitted
in scientometrics. In order to generalise this observation, we may hypothesize that the less restricted
the publication process, the less distinctive the incentive to publish, the less “Zipfian” the order of
publications (e.g. postings). This finding is supported by Zelman and Leydesdorff (2000) who analyse
eleven IMLs of scientific communication which include, for example, IMLs on Self-Organisation and
Science & Technology Studies. This corpus includes mailing lists of scientific projects as well as interme-
diate and field level lists. Zelman and Leydesdorff (2000) aim at describing the dynamics of IMLs by
means of statistical indices. Amongst others, this includes counting the number of messages per thread
and, subsequently, fitting a function in double-logarithmic scale to the distribution of the frequencies
of thread size which allows deriving a corresponding power law with an exponent−0.42 ≤ γ ≤ −0.47.

3.6.3 Networked Blogs in Blogspace

A weblog or blog for short is a web site which, in the majority of cases, is authored by a single author,
i.e. a blogger, with the help of a weblog system (Glance et al., 2004). As the word blog may denote the
action of blogging, its end product (i.e. a blog) or the software that enables blogging (Gill, 2005), we
will solely refer to the product perspective when using this term. According to Kumar et al. (2003) and
Gill (2004), blogs consist of time-aligned, date-stamped, possibly archived entries that are reversely
chronologically ordered and additionally contain links to related entries of the same or other blogs in
conjunction with so-called blogrolls (as lists of links to recommended blogs).

According to Kumar et al., blogs are “quirky, highly personal, often consumed by regular repeat
visitors and highly interwoven into a network of small but active micro-communities.” This network
of interrelated blogs is called BlogSphere, blogosphere or blogspace, respectively. Generally speaking,
blogs can be characterised w.r.t their structure, content and the functions they provide. Nardi et al.
(2004) point out the thematic heterogeneity of blogs and stress the wide range of motivations of blog-
gers to blog which make network analysis a hard task in this area. Likewise, Schmidt et al. (2005) state
that blogs serve divergent functions including that of a personal diary, journalistic publishing as well
as of knowledge or organisational communication. Accordingly, (personal) online diaries or journals,
blogs of pundits (i.e. self-declared knowledge experts), news filter blogs (based on RSS aggregators),
writer or artist blogs, marketing blogs, and spam blogs are distinguished as some examples of weblog
genres (Gruhl et al., 2004; Glance et al., 2004; Bächle, 2006). Krishnamurthy (2002) presents a two-
dimensional model of classifying weblogs according to their personal vs. thematic and community vs.
individual orientation. Schmidt (2006) locates weblogs in-between a spectrum of media schemata
spanned by standard websites on the one hand and media of asynchronous text-based CMC on the
other hand. Other than IMLs as examples of the latter, weblogs are asymmetric (as they are usually
authored by a single blogger whereby readers only have, if at all, the possibility to comment on en-
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tries). Other than websites, weblogs are (intended to be) continuously updated, but are in a restricted
sense multimedial.

Evidently, network studies focusing on a single one of the dimensions just mentioned face the risk
to overgeneralise to the disadvantage of the disregarded dimensions and their impact on networking
within the blogspace (Schmidt et al., 2005). Thus, the sampling of blogs by example of which the
network structure of the blogspace is investigated has to be carefully considered. From a structural
point of view, the following types of links between blogs can be explored for this task (Glance et al.,
2004): (friendship indicating) links as part of the blogroll of a blog, trackbacks (linking blogs whose
bloggers have linked the focal entry), permalinks (as URIs which uniquely identify posts irrespective
of whether they have been archived or not) as well as hyperlinks within a blog entry (to other blogs or
web pages outside the blogspace). Blogs manifest intra links (interrelating entries of the same blog)
as well as extra links which settle them, for example, in the neighborhood of related blogs (partici-
pating in the same discussion) (Gruhl et al., 2004). As all these kinds of links are not (necessarily)
mutual, graphs derived thereof are necessarily directed. Starting from these structural notions, several
reference points of complex network analysis come into play:

• Firstly, so-called small communities in the sense of Kumar et al. (2003), that is sub-networks of
blogs which link to each others postings while discussing some topic within a certain period of
time.

• Secondly, a large component of interlinked blogs or, alternatively, a blog site collecting hundreds
and thousands of (links to) blogs (cf. Kumar et al., 2004) may be made an object of network
analysis. See Adar et al. (2004) for an enumeration of such sites.

• Thirdly, the system of blog sites as interlinked by means of their component blogs may be made an
object of network analysis.

• This leads, fourthly, to the whole blogspace as a candidate input of complex network analysis.

A system for building blog corpora is described by Glance et al. (2004). It includes an URL har-
vester, a blog crawler, a time aligner (for mapping blog entries to timestamps) and an indexer for
making the collected blogs retrievable. The corpus builder also comprises text mining software for
exploring thematic trends and, thus, time-dependent structure formation. As a sample corpus, Glance
et al. crawl about 100,000 weblogs.

Herring et al. (2005) show that blog networks have SW-related characteristics as, for example,
preferential attachment. They investigate the formation of so-called blog dyads constituted by their
manyfold mutual links and “textual interaction” by means of reciprocal verbal exchange manifesting
a sort of “conversation” between the corresponding bloggers. Herring et al. point out that — in con-
trast to what is propagated by the blogger community — blog linkage is an infrequent phenomenon
making such dyads a rather seldom event: “the blogosphere appears to be selectively interconnected,
with dense clusters in parts, and blogs minimally connected in local neighborhoods, or free-floating
individually, constituting the majority.” Likewise, Herring et al. (2004) present frequencies of vari-
ous types of links which in spite of their wide range indicate that linking is a rare phenomenon in
blogspace. This is more or less in accordance with successfully fitting power laws to the in-degree
distribution of blogs — for related studies of power law fitting cf. Glance et al. (2004). See also Tricas
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et al. (2004) who fit a power law with an exponent γ ≈ −0.58, although they report on problems with
fitting. The relevance of such analyses is confirmed by studies which show that users tend to focus on
highly linked blogs. This hints at preferential attachment as a minority of authoritative blogs (Herring
et al., 2005) is preferably linked from other blogs as well as from outside the blogosphere.

By analogy with web fora and internet mailing lists, networked blogs have also been made an
object of investigating time-dependent structure formation. The aim of this research is to investigate
the life cycle of thematic spreads and bursts within the blogosphere. This is made possible by the
timestamps of blog entries. In this context, the study of Kumar et al. (2003, 2004) is of special interest.
Kumar et al. (2003) introduce the notion of a time graph in order to describe link generation in the
blogspace as a function of time. Time graphs are used to explore the build-up of blog communities
and to separate recurrent periods of time within their life cycle. The formation of small communities
(of about three to twenty members — cf. Kumar et al. 2004) is described as a characteristic of the
blogspace. That is, blogs are seen to be networked — other than newsgroups — on the basis of small
communities (of blogs whose authors mutually link each other within their blogrolls and respond
to newly posted content within the corresponding community). Moreover, other than “classic” web
communities (Gibson et al., 1998), blog communities show a strikingly temporal characteristic as
they evolve subject to temporarily raising debates during which linkages of the blogs involved into
community building rapidly grow before they decrease with the debate fading away. Kumar et al.
(2004) distinguish three periods of time in the life cycle of blog communities as they, firstly, undergo
a sudden burst of activity of rapid-fire discussion in a small period of time before they, secondly, lie, so
to speak, dormant for weeks and are, thirdly, replaced by a subsequent burst. A characteristic trait of
their study is that other than many other approaches they analyse a large corpus of about one million
interwoven blogs. Extending the analysis of Kumar et al. (2003), they include the spatial and topical
dimension into network analysis. Such a spatial restriction, which has already been taken into account
in scientometrics, is also considered by Lin and Halavais (2004).

Adar et al. (2004) develop the notion of an information epidemics spreading over the blogosphere.
They analyse a corpus of about 40,000 blogs with about 175,000 links in order to classify sitations
(see Section 3.4) within blogs dependent on their time characteristics. Likewise, Gruhl et al. (2004)
describe the long-term propagation of topics which are referred to in order to segment the blogspace
on a macroscopic level. They distinguish spikes and chatters, that is, ongoing and short-term, but
highly intensive discussions, respectively.

3.6.4 Wiki-based Document Networks

A fourth example of social software which became prominent by the online encyclopedia Wikipedia
(wikipedia.org) is wiki software. By analogy with weblogs, one has to distinguish wiki software (e.g.
MediaWiki, cf. www.mediawiki.org/wiki/MediaWiki, or TWiki, cf. www.twiki.org) from the docu-
ment networks (as exemplified in Table 6) generated with this software. For a comparative overview
of wiki software see www.wikimatrix.org. In the present review we refer to the product perspective
when using the term wiki and, thus, refer by this term to document networks generated by means of
some wiki software. Generally speaking, a wiki is a website which by means of the corresponding soft-
ware allows collaborative writing, editing and revising the collection of pages and links this site con-
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Wiki URL Language

a city wiki ka.stadtwiki.net/Hauptseite de

a wiki about the Wikimedia Foundation’s projects meta.wikimedia.org/wiki/Main_Page en

a wiki-based dictionary of French fr.wiktionary.org/wiki/ fr

Ward Cunningham’s wiki (alias WikiWikiWeb) c2.com/cgi/wiki en

wiki of the Firefox project www.firefox-browser.de/wiki/Hauptseite de

wiki of the MediaWiki software www.mediawiki.org/wiki/MediaWiki en

wiki of the Mozilla project wiki.mozilla.org/Main_Page en

wiki of the OpenOffice.org wiki.services.openoffice.org/wiki/Main_Page en

wiki of the swarm project www.swarm.org/wiki/Main_Page en

wiki of the Wikibooks project of free textbooks en.wikibooks.org/wiki/Wikibooks_portal en

wiki of the wikis of the Apache.org projects wiki.apache.org/general/ en

wiki of the W3C RIF Working Group (restricted access) www.w3.org/2005/rules/wg/wiki/ en

Table 6: Some wikis of knowledge and technical communication.

sists of. By analogy with social software and its output, the generation of wikis is a self-organised pro-
cess initiated and continued by a multitude of cooperating/competing authors who may, but in general
do not have exclusive access to editing the wiki (Kuhlen, 2004). In other words, wikis manifest a sort
of distributed, non-linear production and revision of hypertext documents and, thus, a sort of hyper-
textually manifested distributed cognition including social tagging (Mika, 2005) as exemplified by
the category system of Wikipedia (tools.wikimedia.de/~daniel/WikiSense/CategoryTree.php).
Other than “classic” websites, wikis are continually and cooperatively updated. Other than weblogs
and maling lists, wiki software-mediated communication is, in principle, symmetric in the sense that
every (registered or permitted) user can respond to, continue or edit the contribution of any other wiki
author. Thus, the need of a thread-based organisation does not apply, although changes are archived
by means of history pages accompanying each article page (see below). For a general discussion
of wiki software-mediated communication, the underlying wiki software, some structural, statistical
characteristics of wikis and their impact on knowledge communication see Ebersbach et al. (2005),
Voss (2005), Holloway et al. (2005) and Kuhlen (2004), respectively.

This section concentrates on wikis built by means of the MediaWiki software. It is used by the
Wikimedia Foundation (wikimediafoundation.org/wiki/Home) which hosts the Wikipedia project
and its language specific releases which, together, are the largest wikis on the web. The dumps of these
releases and those of many other wikis of the Wikimedia Foundation are accessible via download.

wikimedia.org what — in spite of the size of these files — makes wiki network analysis a manageable
task. An alternative way of downloading wikis is to explore wiki pages listing, if existing, all entry
pages of the corresponding wiki as, for example, www.firefox-browser.de/wiki/Spezial:Allpages
by example of the Firefox browser wiki. This gives access to all pages of the focal wiki website which
need to be further analysed in order to explore their links.

Network extraction by example of Wiki-based networks faces the situation of the rich type system
of node and link types as exemplified by the Wikipedia. That is, network extraction cannot be per-
formed by simply extracting all wiki article pages as this may disregard other types of nodes and links
(see Table 7). Thus, the question, which node and link types shall be taken into account, has to be
carefully considered. A starting point for distinguishing most elementary node types in MediaWiki-
based networks is what will be called a wiki document which consist of an article page (describing a
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Type Frequency

Pages total 796,454

Article 303,999

Redirect Node 190,193

Talk 115,314

Article Talk 78,224

User Talk 30,924

Image Talk 2,379

Wikipedia Talk 1,380

Category Talk 1,272

Template Talk 705

Portal Talk 339

Mediawiki Talk 64

Help Talk 27

Image 97,402

User 32,150

Disambiguation 22,768

Category 21,999

Template 6,794

Wikipedia 3,435

Mediawiki 1,575

Portal 791

Help 34

Type Frequency

Links total 17,814,539

Interlink 12,818,378

Category Link 1,415,295

Categorises 704,092

Categorised by 704,092

Category Associates with 7,111

Topic of Talk 103,253

Talk of Topic 88,095

Hyponym of 26,704

Hyperonym of 26,704

Inter Portal Association 1,796

Broken 2,361,902

Outside 1,276,818

Inter Wiki 789,065

External 487,753

Intra 1,175,290

Kernel 1,153,928

Across 6,331

Up 6,121

Reflexive 5,433

Down 3,477

Redirect 182,151

Table 7: The system of node and link types and their frequencies by example of the German release of
the Wikipedia (download in November 14, 2005).

certain entry of the wiki), a corresponding discussion (or talk), history and edit this or view source page
which altogether form a flatly structured document.

Due to namespace conventions, some additional types of nodes can be distinguished by example
of the Wikipedia. Table 7 lists all node types as found within its German release or additionally intro-
duced in order to span a hierarchical type system. The central heuristic for extracting instances of node
types relates to the URL of the corresponding document module and its namespace prefix, respectively.
Category, portal and media wiki pages, for example, contain the namespace prefix Kategorie (cate-
gory), Portal (portal) and MediaWiki, respectively. It is separated by a colon from the corresponding
page name suffix. de.wikipedia.org/wiki/Kategorie:Musik, for example, references the page of
the music category, whereas de.wikipedia.org/wiki/Portal:Musik identifies the German Wikipedia

portal on music. Finally, de.wikipedia.org/wiki/Musik references the standard German Wikipedia

article on music. That is, URLs of standard wiki articles do not include a special namespace prefix.
Table 7 lists the frequencies of the instances of the node types as found in the input release of the

Wikipedia. The types are ordered into an inclusion hierarchy in which the child nodes dominated by
the same type (e.g. talk) are ranked according to their frequencies in descending order. Further, the
frequency of a dominating node is the sum of the frequencies of its child nodes. Analogously, table 7
lists all edge types as found within the input wiki or additionally introduced into the study in order to
span a hierarchical type system.

From the point of view of network extraction, redirect nodes and links which manifest transitive
and, thus, mediate links of content-based units are of special interest. An article node v may be linked,
for example, with a redirect node r which in turn redirects to an article w. In this case, the document
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network contains two edges (v, r), (r, w) which have to be resolved to a single edge (v, w) if redirects
are to be excluded in accordance with what the MediaWiki system does when processing them. That
is, a user, when clicking on the corresponding lexical or phrasal anchor of the link (v, r) does not enter
r, but is redirected to the node w. Such redirects may include more than one redirect node r.

A further peculiarity of the Wikipedia are portals which introduce a further level of structuring
above the level of wiki documents and below the level of the wiki website as a whole. Entry pages of
portals are identified by means of the corresponding namespace prefix. Other ways of typing nodes in
wiki-based networks, which are not (necessarily) reflected by a namespace prefix, operate on user or
entry page statistics. This is exemplified by stubs, that is, Wikipedia entries which are too short to be a
useful encyclopedia article.

Complex network and other statistical analyses of wiki-based networks are performed, amongst
others, by Voss (2005), Capocci et al. (2006), Zlatic et al. (2006) and — in comparison to other text
and document networks — by Mehler (2006).

Voss (2005) suggests that Lotka’s law also characterises authorship in Wikipedia w.r.t the distribu-
tion of the number of edits ranked by the number of authors which are responsible for the respective
number of edits. Voss reports a low exponent γ ≈ 0.5. Further, he considers the distribution of the
number of authors ranked by the number of distinct articles they are authors of and also finds a highly
skewed distribution (i.e. very many authors have contributed to only one article whereas only a small
minority of persons authored very many articles while there is a smooth transition between these two
extreme cases.

Capocci et al. (2006) analyse the topology of the English and of the Portuguese release of the
Wikipedia in terms of the bow-tie model of Broder et al. (2000) (cf. Section 3.5). They observe that
most of the entry pages of the Wikipedia belong to its SCC, that is, almost any of its pages can be
reached from any other of these pages. Capocci et al. fit a power law to the in-degree and to the out-
degree distribution of entry pages (which types of pages were actually considered is not mentioned
in the paper). In both cases, fitting is successful with an exponent 2 ≤ γin,out ≤ 2.2. Further, Capocci
et al. observe a lack of correlation regarding the in-degree of vertices and the average in-degree of
its neighboring vertices — this observation is in accordance with computing assortative mixing in the
wiki medium (see below). Finally, Capocci et al. consider a model of network growth based on directed
graphs. They simulate growth in terms of preferential attachment where the probability of acquiring
a new edge is separately computed for incoming and outgoing edges subject to the present in-degree
and out-degree of vertices, respectively. This model does not only distinguish the direction of newly
added edges, but also wether they link already existing vertices or end at newly added ones. A central
conclusion of Capocci et al. is that the Wikipedia resembles the WWW in terms of the characteristics
they measured.

Zlatic et al. (2006) is the most comprehensive Wikipedia-based network study. They analyse the
releases of ten languages (including English, German, Japanese, French and Spanish) by taking differ-
ent node types into account — cf. Table 7. But although Zlatic et al. distinguish article, talk, help, user,
category, redirect and template pages as well as images and multimedia resources, they report only on
calculations with articles, redirects and templates thereby distinguishing broken and non-broken links.
A central aim of their study is to distinguish network characteristics common to all releases from those
which select singletons of them. Zlatic et al. fit power laws to the in and out-degree distributions of
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directed graphs extracted from the Wikipedia releases as well as to the degree distributions of their
undirected counterparts (see Table 4). Further, they fit a power law in order to predict the growth of
links between entry pages as a function of the number of those pages and observe approximately a
linear increase of the number of links and pages. Zlatic et al. compute the rate of assortative mixing
within the different releases, compute their cluster values and estimate the average geodesic distance
of their entry pages (see Table 4). Interestingly, they observe that clustering in Wikipedia generally
decreases with the growth of the network. Generally speaking, the growth dependent variation of
network characteristics will be a promising future direction of complex network research where the
Wikipedia provides a tremendous set of information in support of this kind of research. Zlatic et al.
(2006) also explore motifs of wiki networks by analogy with those found to be characteristic of the
WWW. In spite of this and some other characteristics in support of assuming the resemblance of the
WWW and the Wikipedia, Zlatic et al. find characteristic differences of these networks, for example, in
terms of their reciprocity, that is the non-random existence of reciprocal edges between pairs of ver-
tices (Garlaschelli and Loffredo, 2004). Further, they observe — other than in the WWW — a higher
stability of the average geodesic distance and ask whether these and related differences are due to the
specific growth dynamics of wiki-based networks or due to the structure of the underlying knowledge
system approximated by them — these are just two more questions which are still open for future
research.

Another perspective of exploring wiki-based networks is opened by Mehler (2006) who compar-
atively studies document networks in knowledge, technical, press and WWW-based communication.
He analyses three variants of the German release of the Wikipedia dependent on the different types of
nodes and links taken into account. This ranges from a variant based on article pages and their links
only to the whole spectrum of entry pages and their different types of links as distinguished in Table 7
(except for broken and external links leading to pages outside the input wiki). Further, Mehler (2006)
analyses three wiki networks of the Apache.org which belong to the topic of technical communica-
tion and, thus, considers wikis of different areas of WWW-based communication. He computes the
cluster coefficients and average geodesic distances of input networks, fits power laws to the degree
distributions of undirected graphs extracted from them and calculates the rate of assortative mixing
within these networks (see Table 4). As in the case of the studies summarised above, Mehler (2006)
observes a latent tendency towards disassortative mixing in wiki networks, while they can be definitely
attributed as small worlds according to the WS model. Note that Mehler (2006) reports on very small
values of the exponent γ of the BA model (i.e. γ ≈ 0.5) in the case of the Wikipedia and even smaller
values in the case of the wikis of technical communication. These differences are clarified by hinting
at the choice of kmin and kmax as the degrees from which and up to which power laws are fitted. In
Mehler (2006), the whole degree distributions are fitted while Zlatic et al. use a higher value of kmin

and a lower value of kmax — Capocci et al. (2006) do not report on the choice of kmin and kmax.
A central outcome of Mehler’s study is that the different areas of document networking show

strikingly differences w.r.t their network characteristics (except from their average geodesic distances).
This result supports the view that the small-world property and related characteristics of complex
document networks vary significantly with the underlying genre or area of communication and that
these characteristics denote non-categorical, graded network properties.

43



4 Conclusion and Future Perspectives

This article surveyed approaches to text and document networks which, by the majority, refer to
small-world models. The article reviewed studies in support of the view that these networks share
topological characteristics so that one may speak of principles of the collaborative formation of inter-
textual structures in corpora of natural language texts. In spite of these commonalities, the article
also hinted at the genre-sensitivity of these principles. In this sense, the small-world property, for
example, cannot be attributed categorically, but varies with the underlying text and document genre
which, thus, is not only mirrored on the level of text internal characteristics but also by principles of
intertextual networking.

These and related findings raise the question for the corpus linguistic importance of complex net-
work analysis. From a corpus linguistic point of view, the small-world property of text networks can
be seen as an argument in favor of representative samples as input to computing, for example, cogni-
tively plausible models of lexical association. Although it is known from quantitative linguistics that
such samples are hardly possible — cf., for example, Orlov (1982) — the small-world property can at
least be utilised as a necessary condition which has to be fulfilled by a corpus in order to be judged
as a reliable data base for computing lexical memory models showing the small-world property on
their own. Moreover, knowing that a given corpus has the small-world property one can infer a cer-
tain rate of change of a given variable (e.g. topic) when following intertextual relations. That is, the
notion of intertextual neighborhood relevant to study a given text, as claimed by Stubbs (2001), can
be approached in this framework.

From this perspective, at least three challenging research questions can be identified as an object
of future research in this field:

• What do more realistic, linguistically grounded network models look like which do not only ac-
count for the genre-sensitivity of intertextuality in more detail, but can be used to simulate the
generation of such networks in order to investigate network states which, for the time being, are
empirically unobservable (e.g. because of their complexity or the impossibility of parameter varia-
tion in the case of real networks)?

• What are the interrelationships of quantitative principles on the level of texts (e.g. vocabulary
growth) and those restricting their networking? Is there a unifying, so to speak Zipfian theory
which grasps principles of intra- and intertextual structure formation?

• What do text-technological representation formats and their operations look like which are expres-
sive enough to manage document networks of the complexity mentioned above and to compute
related network characteristics?

These and related questions open up many research opportunities in utilising and enhancing the
apparatus of complex network analysis in corpus linguistics.
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Brinker, K. (1991). Aspekte der Textlinguistik. Zur Einführung. In Brinker, K., editor, Aspekte der Textlinguistik, pages 7–17.
Georg Olms, Hildesheim.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., and Wiener, J. (2000). Graph
structure in the web. Computer Networks, 33:309–320.

Bronstein, I. N., Semendjajew, K. A., Musiol, G., and Mühlig, H. (1999). Taschenbuch der Mathematik. Harri Deutsch,
Frankfurt a. M.

Brown, C. (2004). The Matthew effect of the Annual Reviews series and the flow of scientific communication through the
World Wide Web. Scientometrics, 60(1):25–30.

Capocci, A., Servedio, V. D. P., Colaiori, F., Buriol, L. S., Donato, D., Leonardi, S., and Caldarelli, G. (2006). Preferential
attachment in the growth of social networks: the case of Wikipedia. Physical Review E, 74:036116.

Chakrabarti, S. (2002). Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco. Das
Buch behandelt das Teilgebiet bzw. das Anwendungsgebiet des Web Mining.

Chakrabarti, S., Joshi, M., Punera, K., and Pennock, D. M. (2002). The structure of broad topics on the web. In Proc. of the
11th Internat. World Wide Web Conference, pages 251–262. ACM Press.

Chen, C. (1999). Visualising semantic spaces and author co-citation networks in digital libraries. Information Processing and
Management, 35:401–420.

Chen, C. and Czerwinski, M. (1998). From latent semantics to spatial hypertext: An integrated approach. In Grønbæk, K.,
Mylonas, E., and Shipman, F. M., editors, Proceedings of 9th ACM Conference on Hypertext and Hypermedia, pages 77–86,
New York. ACM.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A. K., Mitchell, T. M., Nigam, K., and Slattery, S. (2000). Learning to
construct knowledge bases from the World Wide Web. Artificial Intelligence, 118(1-2):69–113.

47



de Beaugrande, R. A. (1980). Text, Discourse, and Process. Toward a Multidisciplinary Science of Texts, volume 4 of Advances
in Discourse Processes. Ablex, Norwood.

de Beaugrande, R. A. (1997). New Foundations for a Science of Text and Discourse: Cognition, Communication, and the
Freedom of Access to Knowledge and Society. Ablex, Norwood.

de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683):510–515.

Diestel, R. (2005). Graph Theory. Springer, Heidelberg.

Dillon, A. and Gushrowski, B. A. (2000). Genres and the WEB: Is the personal home page the first uniquely digital genre?
Journal of the American Society of Information Science, 51(2):202–205.

Dorogovtsev, S. N. and Mendes, J. F. F. (2001). Language as an evolving word web. Proceedings of The Royal Society of
London. Series B, Biological Sciences, 268(1485):2603–2606.

Ebersbach, A., Glaser, M., and Heigl, R. (2005). WikiTools. Springer, Berlin.

Egghe, L. and Rousseau, R. (2003). A measure for the cohesion of weighted networks. Journal of the American Society for
Information Science and Technology, 54(3):193–202.

Eiron, N. and McCurley, K. S. (2003). Untangling compound documents on the web. In Proceedings of the 14th ACM
conference on Hypertext and Hypermedia, Nottingham, UK, pages 85–94.
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Köhler, R., editors, Aspects of Automatic Text Analysis, Studies in Fuzziness and Soft Computing, pages 139–167. Springer,
Berlin/New York.

Mehler, A. and Gleim, R. (2005). Polymorphism in generic web units. A corpus linguistic study. In Proceedings of Corpus
Linguistics ’05, July 14-17, 2005, University of Birmingham, Great Britian, volume Corpus Linguistics Conference Series
1(1).

Mehler, A. and Gleim, R. (2006). The net for the graphs – towards webgenre representation for corpus linguistic studies. In
Baroni, M. and Bernardini, S., editors, WaCky! Working Papers on the Web as Corpus, pages 191–224. Gedit, Bologna.

Mehler, A. and Wolff, C., editors (2005). Text Mining, volume 20(1) of LDV Forum – Zeitschrift für Computerlinguistik und
Sprachtechnologie.

Meinel, C. and Sack, H. (2004). WWW. Springer, Berlin.

Melnikov, O., Sarvanov, V., Tyshkevich, R., and Yemelichev, V. (1998). Exercises in Graph Theory. Kluwer, Dordrecht.

Menczer, F. (2004). Lexical and semantic clustering by web links. Journal of the American Society for Information Science
and Technology, 55(14):1261–1269.

Mika, P. (2005). Ontologies are us: A unified model of social networks and semantics. In Proceedings of the 4th International
Semantic Web Conference (ISWC 2005), LNCS 3729, pages 1–18. Springer.

Milgram, S. (1967). The small-world problem. Psychology Today, 2:60–67.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. J. (1990). Introduction to wordnet: an on-line lexical
database. International Journal of Lexicography, 3(4):235–244.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., and Alon, D. C. U. (2002). Network motifs: simple building blocks of
complex networks. Science, 298(5594):824–827.

Motter, A. E., de Moura, A. P. S., Lai, Y.-C., and Dasgupta, P. (2002). Topology of the conceptual network of language.
Physical Review E, 65(065102).

Mukherjea, S. (2000). Organizing topic-specific web information. In Proc. of the 11th ACM Conference on Hypertext and
Hypermedia, pages 133–141. ACM.

Nardi, B. A., Schiano, D. J., Gumbrecht, M., and Swartz, L. (2004). Why we blog. Communications of the ACM, 47(12):41–46.

Newman, M. E. J. (2000). Models of the small world. Journal of Statistical Physics, 101:819–841.

Newman, M. E. J. (2002). Assortative mixing in networks. Physical Review Letters, 89(20):208701.

Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E, 67:026126.

Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45:167–256.

Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46:323–351.

Newman, M. E. J. and Park, J. (2003). Why social networks are different from other types of networks. Physical Review E,
68:036122.

Newman, M. E. J., Watts, D. J., and Strogatz, S. H. (2002). Random graph models of social networks. Proceedings of the
National Academy of Sciences of the United States of America, 99(1):2566–2572.

O’Reilly, T. (2005). What is Web 2.0? Design patterns and business models for the next generation of software. http:

//www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

52
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Sprache, Text, Kunst. Quantitative Analysen, pages 82–117. Brockmeyer, Bochum.

Otte, E. and Rousseau, R. (2002). Social network analysis: a powerful strategy, also for the information sciences. Journal of
Information Science, 28(6):441–454.

Park, H. W. (2003). Hyperlink network analysis: A new method for the study of social structure on the web. Connections,
25(1):49–61.

Pennock, D. M., Flake, G. W., Lawrence, S., Glover, E. J., and Giles, C. L. (2002). Winners don’t take all: Characterizing the
competition for links on the web. Proceedings of the National Academy of Sciences, 99(8):5207–5211.

Pinski, G. and Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application
to the literature of physics. Information Processing and Management, 12:297–312.

Polanyi, L. (1988). A formal model of discourse structure. Journal of Pragmatics, 12:601–638.

Prime, C., Bassecoulard, E., and Zitt, M. (2002). Co-citations and co-sitations: a cautionary view on an analogy. Scientomet-
rics, 54(2):291–308.

Raible, W. (1995). Arten des Kommentierens – Arten der Sinnbildung – Arten des Verstehens. Spielarten der generischen
Intertextualität. In Assmann, J. and Gladigow, B., editors, Text und Kommentar, pages 51–73. Fink, München.

Rapoport, A. (1953). Spread of information through a population with sociostructural basis: I. Assumption of transitivity.
Bulletin of Mathematical Biophysics, 15:523–543.

Rapoport, A. (1982). Zipf’s law re-visited. In Guiter, H. and Arapov, M. V., editors, Studies on Zipf ’s Law, pages 1–28.
Brockmeyer, Bochum.

Ravasz, E. and Barabási, A.-L. (2003). Hierarchical organization in complex networks. Physical Review E, 67:026112.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A.-L. (2002). Hierarchical organization of modularity
in metabolic networks. Science, 297:1551–1555.

Ravichandra Rao, I. K. (1996). Methodological and conceptual questions of bibliometric standards. Scientometrics,
35(2):265–270.

Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. European Physical Journal,
B(4):131–134.

Rehm, G. (2002). Towards automatic web genre identification – a corpus-based approach in the domain of academia by
example of the academic’s personal homepage. In Proc. of the Hawaii Internat. Conf. on System Sciences.

Resnik, P. and Smith, N. A. (2003). The web as a parallel corpus. Computational Linguistics, 29(3):349–380.

Rousseau, B. and Rousseau, R. (2000). LOTKA: A program to fit a power law distribution to observed frequency data.
Cybermetrics, 4(1).

Rousseau, R. (1997). Sitations: an exploratory study. Cybermetrics, 1(1).
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